1887

Abstract

A bv. VF39 gene () encoding a γ-aminobutyrate (GABA) aminotransferase was identified, cloned and characterized. This gene is thought to be involved in GABA metabolism via the GABA shunt pathway, a theoretical bypass of the 2-oxoglutarate dehydrogenase complex. Mutants in are still able to grow on GABA as a sole carbon and nitrogen source. 2-Oxoglutarate-dependent GABA aminotransferase activity is absent in these mutants, while pyruvate-dependent activity remains unaffected. This indicates that at least two enzymes with different substrate specifities are involved in the GABA metabolism of bv. VF39. The promoter was cloned into a newly constructed, stable promoter-probe vector pJP2, suitable for the study of transcriptional GUS fusions in free-living bacteria and during symbiosis. Under free-living conditions the promoter is induced by GABA and repressed by succinate. Transcriptional regulation is mediated by GabR in a repressor-like manner. During symbiosis with the pea host plant is induced and highly expressed in the symbiotic zone. Nodules induced by mutants, however, are still effective in nitrogen fixation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-2-615
2002-02-01
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/2/1480615a.html?itemId=/content/journal/micro/10.1099/00221287-148-2-615&mimeType=html&fmt=ahah

References

  1. Allaway D., Lodwig E., Crompton L. A., Wood M., Parsons R., Wheeler T. R., Poole P. S. 2000; Identification of alanine dehydrogenase and its role in mixed secretion of ammonium and alanine by pea bacteroids. Mol Microbiol 36:508–515 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Zhang J., Zhang Z., Miller W., Lipman D. J., Schäffer A. A. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Arnold W., Pühler A. 1988; A family of high-copy-number plasmid vectors with single end-label sites for rapid nucleotide sequencing. Gene 70:171–179 [CrossRef]
    [Google Scholar]
  4. Ausubel F. M., Brent R., Kingston R. editors 1987 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  5. Axelos M., Bardet C., Liboz T., Le Van Thai A., Curie C., Lescure B. 1989; The gene family encoding the Arabidopsis thaliana translational elongation factor EF-1α: molecular cloning, characterisation and expression. Mol Gen Genet 219:106–112 [CrossRef]
    [Google Scholar]
  6. Bartsch K., Schulz A., von Johnn-Marteville A. 1990; Molecular analysis of two genes of the Escherichia coli gab cluster: nucleotide sequence of the glutamate: succinic semialdehyde transaminase gene ( gabT ) and characterization of the succinic semialdehyde dehydrogenase gene ( gabD . J Bacteriol 172:7035–7042
    [Google Scholar]
  7. Beringer J. E. 1974; R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198 [CrossRef]
    [Google Scholar]
  8. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  9. Boesten B., Batut J., Boistard P. 1998; DctBD-dependent and -independent expression of the Sinorhizobium ( Rhizobium ) meliloti C4-dicarboxylate transport gene ( dctA ) during symbiosis. Mol Plant–Microbe Interact 11:878–886 [CrossRef]
    [Google Scholar]
  10. Colonna-Romano S., Arnold W., Boistard P., Priefer U. B., Schlüter A., Pühler A. 1990; An Fnr-like protein encoded in Rhizobium leguminosarum bv. viciae shows structural and functional homology to Rhizobium meliloti FixK. Mol Gen Genet 223:138–147 [CrossRef]
    [Google Scholar]
  11. Dombrecht B., Vanderleyden J., Michiels J. 2001; Stable RK2-derived cloning vectors for the analysis of gene expression and gene function in gram-negative bacteria. Mol Plant–Microbe Interact 14:426–430 [CrossRef]
    [Google Scholar]
  12. Dover S., Halpern Y. S. 1971; Utilisation of γ-aminobutyric acid as sole carbon and nitrogen source by Escherichia coli K-12 mutants. J Bacteriol 109:835–843
    [Google Scholar]
  13. Dunn M. F. 1998; Tricarboxylic acid cycle and anapleurotic enzymes in Rhizobia . FEMS Microbiol Rev 22:105–123 [CrossRef]
    [Google Scholar]
  14. Jovanovic G., Model P. 1997; PspF and IHF bind co-operatively in the psp promoter-regulatory region of Escherichia coli . Mol Microbiol 25:473–481 [CrossRef]
    [Google Scholar]
  15. Kaneko T., Nakamura Y., Sato S. 21 other authors 2000; Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti (supplement. DNA Res 7:381–406 [CrossRef]
    [Google Scholar]
  16. Kouchi H., Fukai K., Kihara A. 1991; Metabolism of glutamate and aspartate in bacteroids isolated from soybean root nodules. J Gen Microbiol 137:2901–2910 [CrossRef]
    [Google Scholar]
  17. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. McDermott T. R., Griffith S. M., Vance C. P., Graham P. H. 1989; Carbon metabolism in Bradyrhizobium japonicum bacteroids. FEMS Microbiol Lett 63:327–340
    [Google Scholar]
  19. McRae D. G., Miller R. W., Berndt W. B. 1989; Viability of alfalfa nodule bacteroids isolated by density gradient centrifugation. Symbiosis 7:67–80
    [Google Scholar]
  20. Miller R. W., McRae D. G., Joy K. 1991; Glutamate and gamma-aminobutyrate metabolism in isolated Rhizobium meliloti bacteroids. Mol Plant–Microbe Interact 4:37–45 [CrossRef]
    [Google Scholar]
  21. Poole P. S., Allaway D. 2000; Carbon and nitrogen metabolism in Rhizobium . Adv Microb Physiol 43:117–163
    [Google Scholar]
  22. Poole P. S., Blyth A., Reid C. J., Walters K. 1994; myo -Inositol catabolism and catabolite regulation in Rhizobium leguminosarum bv. viciae. Microbiology 140:2787–2795 [CrossRef]
    [Google Scholar]
  23. Priefer U. B. 1989; Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum bv. viciae VF39. J Bacteriol 171:6161–6168
    [Google Scholar]
  24. Salminen S. O., Streeter J. G. 1992; Labelling of carbon pools in Bradyrhizobium japonicum and Rhizobium leguminosarum bv. viciae bacteroids following incubation of intact nodules with 14CO2. Plant Physiol 100:597–604 [CrossRef]
    [Google Scholar]
  25. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73 [CrossRef]
    [Google Scholar]
  26. Simon R., Priefer U. B., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1:784–791 [CrossRef]
    [Google Scholar]
  27. Simon R., Quandt J., Klipp W. 1989; New derivatives of transposon Tn 5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in Gram-negative bacteria. Gene 80:161–169 [CrossRef]
    [Google Scholar]
  28. Stover C. K., Pham X. Q., Erwin A. L. 23 other authors; 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964 [CrossRef]
    [Google Scholar]
  29. Streeter J. G. 1991; Transport and metabolism of carbon and nitrogen in legume nodules. Adv Bot Res Incorp Adv Plant Pathol 18:129–187
    [Google Scholar]
  30. Vance C. P., Heichel G. H. 1991; Carbon in N2 fixation: limitation or exquisite adaptation. Annu Rev Plant Physiol Plant Mol Biol 42:373–392 [CrossRef]
    [Google Scholar]
  31. Vincent J. M. 1970 A Manual for the Practical Study of Root Nodule Bacteria. Oxford: Blackwell Scientific;
    [Google Scholar]
  32. Walshaw D. L., Wilkinson A., Mundy M., Smith M., Poole P. S. 1997; Regulation of the TCA cycle and the general amino acid permease by overflow metabolism in Rhizobium leguminosarum. Microbiology 143:2209–2221
    [Google Scholar]
  33. Waters J. K., Hughes B. L., Purcell L. C., Gerhardt K. O., Mawhinney T. P., Emerich D. W. 1998; Alanine, not ammonia, is excreted from N2-fixing soybean nodule bacteroids. Proc Natl Acad Sci USA 95:12038–12042 [CrossRef]
    [Google Scholar]
  34. Weinstein M., Roberts R. C., Helinski D. R. 1992; A region of the broad-host-range plasmid RK2 causes stable in planta inheritance of plasmids in Rhizobium meliloti cells isolated from alfalfa root nodules. J Bacteriol 174:7486–7489
    [Google Scholar]
/content/journal/micro/10.1099/00221287-148-2-615
Loading
/content/journal/micro/10.1099/00221287-148-2-615
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error