1887

Abstract

Deposition onto glass in a parallel plate (PP) and in a stagnation point (SP) flow chamber of , sp. and , suspended in artificial seawater, was compared in order to determine the influence of methodology on bacterial adhesion mechanisms. The three strains had different cell surface hydrophobicities, with water contact angles on bacterial lawns ranging from 18 to 85 degrees. Bacterial zeta potentials in artificial seawater were essentially zero. The three strains showed different adhesion kinetics and the hydrophilic bacterium had the greatest affinity for hydrophilic glass. On average, initial deposition rates were two- to threefold higher in the SP than in the PP flow chamber, possibly due to the convective fluid flow toward the substratum surface in the SP flow chamber causing more intimate contact between a substratum and a bacterial cell surface than the gentle collisions in the PP flow chamber. The ratios between the experimental deposition rates and theoretically calculated deposition rates based on mass transport equations not only differed among the strains, but were also different for the two flow chambers, indicating different mechanisms under the two modes of mass transport. The efficiencies of deposition were higher in the SP flow chamber than in the PP flow chamber: 62±4 and 114±28% respectively. Experiments in the SP flow chamber were more reproducible than those in the PP flow chamber, with standard deviations over triplicate runs of 8% in the SP and 23% in the PP flow chamber. This is probably due to better-controlled convective mass transport in the SP flow chamber, as compared with the diffusion-controlled mass transport in the PP flow chamber. In conclusion, this study shows that bacterial adhesion mechanisms depend on the prevailing mass transport conditions in the experimental set-up used, which makes it essential in the design of experiments that a methodology is chosen with mass transport conditions resembling the problem under investigation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-2-597
2002-02-01
2020-09-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/2/1480597a.html?itemId=/content/journal/micro/10.1099/00221287-148-2-597&mimeType=html&fmt=ahah

References

  1. Absolom D. R., Lamberti F. V., Policova Z., Zingg W., Van Oss C. J., Neumann W.. 1983; Surface thermodynamics of bacterial adhesion. Appl Environ Microbiol46:90–97
    [Google Scholar]
  2. Adamczyk Z.. 1989; Particle deposition from flowing suspensions. Colloids Surf39:1–37[CrossRef]
    [Google Scholar]
  3. Adamczyk Z., Van de Ven T. G. M.. 1981; Deposition of particles under external forces in laminar flow through parallel-plate cylindrical channels. J Colloid Interface Sci80:340–356[CrossRef]
    [Google Scholar]
  4. Adamczyk Z., Van de Ven T. G. M.. 1984; Kinetics of particle accumulation at collector surfaces. J Colloid Interface Sci97:68–90[CrossRef]
    [Google Scholar]
  5. Bos R., Busscher H. J., Van der Mei H. C.. 1999; Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiol Rev23:179–230
    [Google Scholar]
  6. Bowen B. D.. 1985; Streaming potential in the hydrodynamic entrance region of cylindrical and rectangular capillaries. J Colloid Interface Sci106:367–376[CrossRef]
    [Google Scholar]
  7. Brenner H.. 1961; The slow motion of a sphere through a viscous fluid towards a plane surface. Chem Eng Sci16:242–251[CrossRef]
    [Google Scholar]
  8. Busscher H. J., Weerkamp A. H., Van Pelt A. W. J., De Jong H. P., Arends J., Van der Mei H. C.. 1984; Measurements of the surface free energy of bacteria cell surfaces and its relevance for adhesion. Appl Environ Microbiol48:980–983
    [Google Scholar]
  9. Cooksey K. E., Wigglesworth-Cooksey B.. 1995; Adhesion of bacteria and diatoms to surfaces in the sea: a review. Aquat Microb Ecol9:87–96[CrossRef]
    [Google Scholar]
  10. Cozens-Roberts C., Quinn J. A., Lauffenburger D. A.. 1990; Receptor-mediated adhesion phenomena. Model studies with the radial-flow detachment assay. Biophys J58:107–126[CrossRef]
    [Google Scholar]
  11. Dabros T., Van de Ven T. G. M.. 1987; Deposition of latex particles on glass surfaces in an impinging jet. Phys Chem Hydrodyn8:161–172
    [Google Scholar]
  12. Dalton H. M., Stein J., March P. E.. 2000; A biological assay for detection of heterogeneities in the surface hydrophobicity of polymer coatings exposed to the marine environment. Biofouling15:83–94[CrossRef]
    [Google Scholar]
  13. Dempsey M. J.. 1981; Colonisation of antifouling paints by marine bacteria. Bot Mar24:185–191
    [Google Scholar]
  14. Doyle R. J., Nesbitt W. E., Taylor K. G.. 1982; On the mechanism of adherence of Streptococcus sanguis to hydroxylapatite. FEMS Microbiol Lett15:1–5[CrossRef]
    [Google Scholar]
  15. Elimelech M.. 1994; Particle deposition on ideal collectors from dilute flowing suspensions: mathematical formulation, numerical solution, and simulations. Sep Technol4:186–212[CrossRef]
    [Google Scholar]
  16. Elimelech M., Gregory J., Jia X., Williams R.. 1995; Colloidal hydrodynamics and transport, modelling of particle deposition onto ideal collectors. In Particle Deposition and Aggregation pp68–156 Edited by Williams R. A.. Woburn,MA: Butterworth-Heinemann;
    [Google Scholar]
  17. Gomez-Suarez C., Busscher H. J., Van der Mei H. C.. 2001; Analysis of bacterial detachment from substratum surfaces by the passage of air liquid interfaces. Appl Environ Microbiol67:2531–2537[CrossRef]
    [Google Scholar]
  18. Hiemenz P. C.. 1977; Electrophoresis and other electrokinetic phenomena. In Principles of Colloid and Surface Chemistry pp452–487 Edited by Lagowski J. J.. New York: Marcel Dekker;
    [Google Scholar]
  19. James A. M.. 1991; Charge properties of microbial surfaces. . In Microbial Cell Surface Analysis – Structure and Physicochemical Methods pp221–262 Edited by Mozes N., Handley P. S., Busscher H. J., Rouxhet P. G.. New York: VCH;
    [Google Scholar]
  20. Kamiti M., Van de Ven T. G. M.. 1995; Impinging jet studies of the kinetics of deposition and dissolution of calcium carbonate particles. Colloids Surf100:117–129[CrossRef]
    [Google Scholar]
  21. Leenaars A. F. M., O’Brien S. B. G.. 1989; A new approach to the removal of sub-micron particles from solid (silicon) substrates. In Particles on Surfaces: Detection, Adhesion and Removal pp361–372 Edited by Mittal K. L.. New York: Plenum;
    [Google Scholar]
  22. Little B., Ray R., Jones-Meehan P., Lee C., Mansfeld F.. 1999; Spatial relationships between marine bacteria and localized corrosion on polymer coated steel. Biofouling13:301–321[CrossRef]
    [Google Scholar]
  23. Morisaki H., Nagai S., Ohshima H., Ikemoto E., Kogure K.. 1999; The effect of motility and cell-surface polymers on bacterial attachment. Microbiology145:2797–2802
    [Google Scholar]
  24. Ohshima H.. 1995; Electrophoretic mobility of soft particles. Colloids Surf A103:249–255[CrossRef]
    [Google Scholar]
  25. Peters M. H.. 1990; Adsorption of interacting Brownian particles onto surfaces. J Colloid Interface Sci138:451–464[CrossRef]
    [Google Scholar]
  26. Rutter P. R., Vincent B.. 1980; The adhesion of micro-organisms to surfaces: physico-chemical aspects. In Microbial Adhesion to Surfaces pp79–92 Edited by Berkeley R. C. W., Lynch J. M., Melling J., Rutter P. R., Vincent B.. London: Ellis Horwood;
    [Google Scholar]
  27. Sjollema J., Busscher H. J., Weerkamp A. H.. 1989; Real-time enumeration of adhering microorganisms in a parallel plate cell using automated image analysis. J Microbiol Methods9:73–78[CrossRef]
    [Google Scholar]
  28. Sjollema J., Uyen H. M. W., Busscher H. J., Van der Mei H. C.. 1990a; The influence of collector and bacterial cell surface properties on the deposition of oral streptococci in a parallel plate flow cell. J Adhesion Sci Tech4:765–777[CrossRef]
    [Google Scholar]
  29. Sjollema J., Uyen H. M., Busscher H. J., Van der Mei H. C.. 1990b; Direct observations of cooperative effects in oral streptococcal adhesion to glass by analysis of the spatial arrangement of adhering bacteria. FEMS Microbiol Lett69:263–270[CrossRef]
    [Google Scholar]
  30. Tsibouklis J., Stone M., Thorpe A. A., Graham P., Peters V., Heerlien R., Smith J. R., Green K. L., Nevell T. G.. 1999; Preventing bacterial adhesion onto surfaces: the low-surface-energy approach. Biomaterials20:1229–1235[CrossRef]
    [Google Scholar]
  31. Van der Mei H. C., Busscher H. J., Bos R., Boonaert C. J. P., Dufrẽne Y. F.. 2000; Direct probing by atomic force microscopy of the cell surface softness of a fibrillated and nonfibrillated oral streptococcal strain. Biophys J78:2668–2674[CrossRef]
    [Google Scholar]
  32. Van Oss C. J., Gillman C. F.. 1972; Phagocytosis as a surface phenomenon. J Reticuloendothel Soc12:497–502
    [Google Scholar]
  33. Van Wagenen R. J., Andrade J. D.. 1980; Flat plate streaming potential investigations, hydrodynamics and electrokinetic equivalency. J Colloid Interface Sci76:305–314[CrossRef]
    [Google Scholar]
  34. Wit P. J., Busscher H. J., Noordmans J.. 1997; Tracking of colloidal particles using microscopic image sequence analysis, application to particulate microelectrophoresis and particle deposition. Colloids Surf125:85–92[CrossRef]
    [Google Scholar]
  35. Yang J., Bos R., Poortinga A., Wit P. J., Belder G. F., Busscher H. J.. 1999; Comparison of particle deposition in a parallel plate and a stagnation point flow chamber. Langmuir15:4671–4677[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-2-597
Loading
/content/journal/micro/10.1099/00221287-148-2-597
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error