Conserved aspartic acids are essential for the enzymic activity of the WecA protein initiating the biosynthesis of O-specific lipopolysaccharide and enterobacterial common antigen in Free

Abstract

The integral membrane protein WecA mediates the transfer of -acetylglucosamine (GlcNAc) 1-phosphate to undecaprenyl phosphate (Und-P) with the formation of a phosphodiester bond. Bacteria employ this reaction during the biosynthesis of enterobacterial common antigen as well as of many O-specific lipopolysaccharides (LPSs). Alignment of a number of prokaryotic and eukaryotic WecA-homologous sequences identified a number of conserved aspartic acid (D) residues in putative cytoplasmic loops II and III of the inner-membrane protein. Site-directed mutagenesis was used to study the role of the conserved residues D90, D91 (loop II), D156 and D159 (loop III). As controls, D35, D94 and D276 were also mutagenized. The resulting WecA derivatives were assessed for function by complementation analysis of O-antigen biosynthesis, by the ability to incorporate radiolabelled precursor to a biosynthetic intermediate, by detection of the terminal GlcNAc residue in LPS and by a tunicamycin competition assay. It was concluded from these analyses that the conserved aspartic acid residues are functionally important, but also that they participate differently in the transfer reaction. Based on these results it is proposed that D90 and D91 are important in forwarding the reaction product to the next biosynthetic step, while D156 and D159 are a part of the catalytic site of the enzyme.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-2-571
2002-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/2/1480571a.html?itemId=/content/journal/micro/10.1099/00221287-148-2-571&mimeType=html&fmt=ahah

References

  1. Alexander D. C., Valvano M. A. 1994; Role of rfe gene in the biosynthesis of the Escherichia coli O7-specific lipopolysaccharide and other O-specific polysaccharides containing N -acetylglucosamine. J Bacteriol 176:7079–7084
    [Google Scholar]
  2. Allingham J. S., Pribil P. A., Haniford D. B. 1999; All three residues of the Tn 10 transposase DDE catalytic triad function in divalent metal ion binding. J Mol Biol 289:1195–1206 [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  4. Amer A. O., Valvano M. A. 2000; The N-terminal region of the Escherichia coli WecA (Rfe) protein, containing three predicted transmembrane helices, is required for function but not for membrane insertion. J Bacteriol 182:498–503 [CrossRef]
    [Google Scholar]
  5. Amer A. O., Valvano M. A. 2001; Conserved amino acid residues found in a predicted cytosolic domain of the lipopolysaccharide biosynthetic protein WecA are implicated in the recognition of UDP- N -acetylglucosamine. Microbiology 147:3015–3025
    [Google Scholar]
  6. Anderson M. S., Eveland S. S., Price N. P. 2000; Conserved cytoplasmic motifs that distinguish sub-groups of the polyprenol phosphate: N -acetylhexosamine-1-phosphate transferase family. FEMS Microbiol Lett 191:169–175 [CrossRef]
    [Google Scholar]
  7. Barr K., Nunes-Edwards P., Rick P. D. 1989; synthesis of a lipid-linked trisaccharide involved in synthesis of enterobacterial common antigen. J Bacteriol 171:1326–1332
    [Google Scholar]
  8. Bouhss A., Mengin-Lecreulx D., Le Beller D., Van Heijenoort J. 1999; Topological analysis of the MraY protein catalysing the first membrane step of peptidoglycan synthesis. Mol Microbiol 34:576–585 [CrossRef]
    [Google Scholar]
  9. Bronner D., Clarke B. R., Whitfield C. 1994; Identification of an ATP-binding cassette transport system required for translocation of lipopolysaccharide O-antigen side-chains across the cytoplasmic membrane of Klebsiella pneumoniae serotype O1. Mol Microbiol 14:505–519 [CrossRef]
    [Google Scholar]
  10. Burda P., Aebi M. 1999; The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta 1426:239–257 [CrossRef]
    [Google Scholar]
  11. Clarke B. R., Bronner D., Keenleyside W. J., Severn W. B., Richard J. C., Whitfield C. 1995; Role of Rfe and RfbF in the initiation of biosynthesis of d-galactan I, the lipopolysaccharide O antigen from Klebsiella pneumoniae serotype O1. J Bacteriol 177:5411–5418
    [Google Scholar]
  12. Cserzo M., Wallin E., Simon I., Elofsson A., von Heijne G. 1997; Prediction of transmembrane α-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng 10:673–676 [CrossRef]
    [Google Scholar]
  13. Dal Nogare A. R., Lehrman M. A. 1988; Conserved sequences in enzymes of the UDP-GlcNAc/MurNAc family are essential in hamster UDP-GlcNAcdolichol-P GlcNAc-1-P transferase. Glycobiology 8:625–632
    [Google Scholar]
  14. Dan N., Lehrman M. A. 1997; Oligomerization of hamster UDP-GlcNAc: dolichol-P GlcNAc-1-P transferase, an enzyme with multiple transmembrane spans. J Biol Chem 272:14214–14219 [CrossRef]
    [Google Scholar]
  15. Dan N., Middleton R. B., Lehrman M. A. 1996; Hamster UDP- N -acetylglucosamine: dolichol-P N -acetylglucosamine-1-P transferase has multiple transmembrane spans and a critical cytosolic loop. J Biol Chem 271:30717–30724 [CrossRef]
    [Google Scholar]
  16. Datta A. K., Lehrman M. A. 1993; Both potential dolichol recognition sequences of hamster GlcNAc-1-phosphate transferase are necessary for normal enzyme function. J Biol Chem 268:12663–12668
    [Google Scholar]
  17. Davies D. R., Goryshin I. Y., Reznikoff W. S., Rayment I. 2000; Three-dimensional structure of the Tn 5 synaptic complex transposition intermediate. Science 289:77–85 [CrossRef]
    [Google Scholar]
  18. Dower W. J., Miller J. F., Ragsdale C. W. 1988; High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145 [CrossRef]
    [Google Scholar]
  19. Elbein A. D. 1987; Inhibitors of the biosynthesis and processing of N -linked oligosaccharide chains. Annu Rev Biochem 56:497–534 [CrossRef]
    [Google Scholar]
  20. Feldman M. F., Marolda C. L., Monteiro M. A., Perry M. B., Parodi A. J., Valvano M. A. 1999; The activity of a putative polyisoprenol-linked sugar translocase (Wzx) involved in Escherichia coli O antigen assembly is independent of the chemical structure of the O repeat. J Biol Chem 274:35129–35138 [CrossRef]
    [Google Scholar]
  21. Gaspar J. A., Thomas J. A., Marolda C. L., Valvano M. A. 2000; Surface expression of O-specific lipopolysaccharide in Escherichia coli requires the function of the TolA protein. Mol Microbiol 38:262–275 [CrossRef]
    [Google Scholar]
  22. Guzman L. M., Belin D., Carson M. J., Beckwith J. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130
    [Google Scholar]
  23. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  24. Klena J. D., Schnaitman C. A. 1993; Function of the rfb gene cluster and the rfe gene in the synthesis of O antigen by Shigella dysenteriae 1. Mol Microbiol 9:393–402 [CrossRef]
    [Google Scholar]
  25. Lehrman M. A. 1994; A family of UDP-GlcNAc/MurNAc: polyisoprenol-P GlcNAc/MurNAc-1-P transferases. Glycobiology 4:768–771 [CrossRef]
    [Google Scholar]
  26. Marolda C. L., Welsh J., Dafoe L., Valvano M. A. 1990; Genetic analysis of the O7-polysaccharide biosynthesis region from the Escherichia coli O7-K1 strain VW187. J Bacteriol 172:3590–3599
    [Google Scholar]
  27. Meier-Dieter U., Barr K., Starman R., Hatch L., Rick P. D. 1992; Nucleotide sequence of the Escherichia coli rfe gene involved in the synthesis of enterobacterial common antigen. J Biol Chem 267:746–753
    [Google Scholar]
  28. Osborn M. J., Gander J. E., Parisi E., Carson J. 1972; Mechanism of assembly of the outer membrane of Salmonella typhimurium . Isolation and characterization of cytoplasmic and outer membrane. J Biol Chem 247:3962–3972
    [Google Scholar]
  29. Rick P. D., Silver R. P. 1996; Enterobacterial common antigen and capsular polysaccharides.. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp 104–122 Edited by Neidhardt F. C., Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E., Curtiss III R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Rush J. S., Rick P. D., Waechter C. J. 1997; Polyisoprenyl phosphate specificity of UDP-GlcNAc: undecaprenyl phosphate N -acetylglucosaminyl 1-P transferase from E. coli . Glycobiology 7:315–322 [CrossRef]
    [Google Scholar]
  31. Shemyakin M. F., Malygin A. G., Patrushev L. I. 1978; A study of the conditions of the first phosphodiester bond formation by E. coli RNA polymerase. FEBS Lett 91:253–256 [CrossRef]
    [Google Scholar]
  32. Sonnhammer E. L. L., von Heijne G., Krogh A. 1998; A hidden Markov model for predicting transmembrane helices in protein sequences. In Proceedings of Sixth International Conference on Intelligent Systems for Molecular Biology pp 175–182 Edited by Glasgow J., Littlejohn T., Major F., Lathrop R., Sankoff D., Sensen C. Menlo Park, CA: American Association for Artificial Intelligence Press;
    [Google Scholar]
  33. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  34. Valvano M. A., Crosa J. H. 1989; Molecular cloning and expression in Escherichia coli K-12 of chromosomal genes determining the O7 lipopolysaccharide antigen of a human invasive strain of E. coli O7: K1. Infect Immun 57:937–943
    [Google Scholar]
  35. Wang L., Lui D., Reeves P. R. 1996; C-terminal half of Salmonella enterica WbaP (RfbP) is the galactosyl-1-phosphate transferase domain catalysing the first step of O antigen synthesis. J Bacteriol 178:2598–2604
    [Google Scholar]
  36. Whitfield C. 1995; Biosynthesis of lipopolysaccharide O antigens. Trends Microbiol 3:178–185 [CrossRef]
    [Google Scholar]
  37. van der Wolk J. P. W., Klose M., Freudl R., Driessen A. J., de Wit J. G., den Blaauwen T. 1995; Identification of the magnesium-binding domain of the high-affinity ATP-binding site of the Bacillus subtilis and Escherichia coli SecA protein. J Biol Chem 270:18975–18982 [CrossRef]
    [Google Scholar]
  38. Yao Z., Valvano M. A. 1994; Genetic analysis of the O-specific lipopolysaccharide biosynthesis region ( rfb ) of Escherichia coli K-12 W3110: identification of genes that confer group 6 specificity to Shigella flexneri serotypes Y and 4a. J Bacteriol 176:4133–4143
    [Google Scholar]
  39. Zhou T., Rosen B. P. 1999; Asp45 is a Mg2+ ligand in the ArsA ATPase. J Biol Chem 274:13854–13858 [CrossRef]
    [Google Scholar]
  40. Zhu X., Lehrman M. A. 1990; Cloning, sequence, and expression of a cDNA encoding hamster UDP-GlcNAc: dolichol phosphate- N -acetylglucosamine-1-phosphate transferase. J Biol Chem 265:14250–14255
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-2-571
Loading
/content/journal/micro/10.1099/00221287-148-2-571
Loading

Data & Media loading...

Most cited Most Cited RSS feed