1887

Abstract

nuclease is a small, secreted protein which has been successfully used as a reporter system to identify exported products in . Here, biochemical evidence is provided that the nuclease is exported by in the presence, but also in the absence of a signal sequence, and thus probably independently of the Sec translocation pathway. This implies that the nuclease should not be used as a reporter system in mycobacteria for the identification of exported products, despite what has been reported previously in the literature. The nuclease can be extended to create hybrid proteins that remain compatible with its secretion, whereas some other shorter fusions are not tolerated. This suggests that correct folding is required for efficient export. Extensive mutational analysis did not identify a specific secretion pathway. This suggests that the nuclease may be exported by different redundant systems or that components of this alternative Sec pathway are essential for bacterial survival.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-2-529
2002-02-01
2020-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/2/1480529a.html?itemId=/content/journal/micro/10.1099/00221287-148-2-529&mimeType=html&fmt=ahah

References

  1. Berks B. C., Sergent F., Palmer T.. 2000; The TAT protein export pathway . Mol Microbiol. 35260–274[CrossRef]
  2. Braibant M., Gilot P., Content J.. 2000; The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis . FEMS Microbiol Rev24:449–467[CrossRef]
    [Google Scholar]
  3. Braunstein M., Griffin T. J., Kriakov J. I., Friedman S. T., Grindley N. D. F., Jacobs W. R.. 2000; Identification of genes encoding exported Mycobacterium tuberculosis proteins using a Tn522′phoA in vitro transposition system. J Bacteriol182:2732–2740[CrossRef]
    [Google Scholar]
  4. Carroll J. D., Wallace R. C., Keane J., Remond H. G., Arbeit R. D.. 2000; Identification of Mycobacterium avium DNA sequences that encode exported proteins by using phoA gene fusions. Tuber Lung Dis80:117–130[CrossRef]
    [Google Scholar]
  5. Chubb A. J., Woodman Z. L., Jurgen Hoffmann H., Scholle R., Ehlers M., da Silva Tatley F.. 1998; Identification of Mycobacterium tuberculosis signal sequences that direct the export of a leaderless β-lactamase gene product in Escherichia coli . Microbiology144:1619–1629[CrossRef]
    [Google Scholar]
  6. Clemens D. L., Lee B.-Y., Horwitz M. A.. 1995; Purification, characterization, and genetic analysis of Mycobacterium tuberculosis urease, a potentially critical determinant of host–pathogen interaction. J Bacteriol177:5644–5652
    [Google Scholar]
  7. Cole S. T., Brosch R., Parkhill J.. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544[CrossRef]
    [Google Scholar]
  8. Downing K. J., McAdam R. A., Mizrahi V.. 1999; Staphylococcus aureus nuclease is a useful secretion reporter for mycobacteria. Gene239:293–299[CrossRef]
    [Google Scholar]
  9. Gey van Pittius N. C., Hide W., Gamieldien J., Brown G. D., Beyers A. D.. 2000; Genomes 2000: International Conference on Microbial Model Genomes , abstract 1. p– 33
    [Google Scholar]
  10. Gomez M., Johnson S., Gennaro M. L.. 2000; Identification of secreted proteins of Mycobacterium tuberculosis by a bioinformatic approach. Infect Immun68:2323–2327[CrossRef]
    [Google Scholar]
  11. Guilhot C., Gicquel B., Martin C.. 1992; Temperature-sensitive mutants of the Mycobacterium plasmid pAL5000. FEMS Microbiol Lett98:181–186[CrossRef]
    [Google Scholar]
  12. Guilhot C., Otal I., Van Rompaey I., Martin C., Gicquel B.. 1994; Efficient transposition in mycobacteria: construction of Mycobacterium smegmatis insertional mutant libraries. J Bacteriol176:535–539
    [Google Scholar]
  13. Harth G., Horwitz M. A.. 1997; Expression and efficient export of enzymatically active Mycobacterium tuberculosis glutamine synthetase in Mycobacterium smegmatis and evidence that the information for the export is contained within the protein. J Biol Chem272:22728–22735[CrossRef]
    [Google Scholar]
  14. Harth G., Horwitz M. A.. 1999; Export of recombinant Mycobacterium tuberculosis superoxide dismutase is dependent upon both information in the protein and mycobacterial export machinery. J Biol Chem274:4281–4292[CrossRef]
    [Google Scholar]
  15. Hynes T. R., Fox R. O.. 1991; The crystal structure of staphylococcal nuclease refined at 1·7 Å resolution. Proteins Struct Funct Genet10:92–105[CrossRef]
    [Google Scholar]
  16. Lachica R. V. F., Genigeorgis C., Hoeprich P. D.. 1971; Metachromatic agar-diffusion methods for detecting staphylococcal nuclease activity. Appl Microbiol21:585–587
    [Google Scholar]
  17. Liebl W., Sinskey A. J., Schleifer K.-H.. 1992; Expression, secretion and processing of staphylococcal nuclease by Corynebacterium glutamicum . J Bacteriol174:1854–1861
    [Google Scholar]
  18. Lim E. M., Rauzier J., Timm J., Torrea G., Murray A., Giquel B., Portnoi D.. 1995; Identification of Mycobacterium tuberculosis DNA sequences encoding exported proteins by using phoA gene fusions. J Bacteriol177:59–65
    [Google Scholar]
  19. Poquet I., Ehrlich S. D., Gruss A.. 1998; An export-specific reporter designed for Gram-positive bacteria: application to Lactococcus lactis . J Bacteriol180:1904–1912
    [Google Scholar]
  20. Ranes M. G., Rauzier J., Lagranderie M., Gheorghiu M., Gicquel B.. 1990; Functional analysis of pAL5000, a plasmid from Mycobacterium fortuitum : construction of a ‘mini’ Mycobacterium Escherichia coli shuttle vector. J Bacteriol172:2793–2797
    [Google Scholar]
  21. Ravn P., Arnau J., Madsen S., Vrang A., Israelsen H.. 2000; The development of Tn Nuc and its use for the isolation of novel secretion signals in Lactococcus lactis . Gene242:347–356[CrossRef]
    [Google Scholar]
  22. Raynaud C., Etienne G., Peyron P., Lanéelle M. A., Daffé M.. 1998; Extracellular enzyme activities potentially involved in the pathogenicity of Mycobacterium tuberculosis . Microbiology144:577–587[CrossRef]
    [Google Scholar]
  23. Reyrat J. M., Berthet F. X., Gicquel B.. 1995; The urease locus of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette–Guerin. Proc Natl Acad Sci USA92:8768–8772[CrossRef]
    [Google Scholar]
  24. Rosenkrands I., Weldingh K., Jacobsen S., Veggerby Hansen C., Florio W., Gianetri I., Andersen P.. 2000; Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection. Electrophoresis21:935–948[CrossRef]
    [Google Scholar]
  25. Sahl H. G., Bierbaum G.. 1998; Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from Gram-positive bacteria. Annu Rev Microbiol52:41–79[CrossRef]
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Sorensen A. L., Nagai S., Houen G., Andersen P., Andersen A. B.. 1995; Purification and characterization of a low-molecular-mass T-cell antigen secreted by M. tuberculosis . Infect Immun63:1710–1717
    [Google Scholar]
  28. Suciu D., Inouye M.. 1996; The 19-residue pro-peptide of staphylococcal nuclease has a profound secretion-enhancing ability in Escherichia coli . Mol Microbiol21:181–195[CrossRef]
    [Google Scholar]
  29. Timm J., Perilli M. G., Duez C.. 9 other authors 1994; Transcription and expression analysis, using lacZ and phoA gene fusions, of Mycobacterium fortuitum β-lactamase genes cloned from a natural isolate and a high level β-lactamase producer. Mol Microbiol12:491–504[CrossRef]
    [Google Scholar]
  30. Trias J., Jarlier V., Benz R.. 1992; Porins in cell wall of mycobacteria. Science258:1479–1481[CrossRef]
    [Google Scholar]
  31. Triccas J. A., Berthet F.-X., Pelicic V., Gicquel B.. 1999; Use of fluorescence induction and sucrose counterselection to identify Mycobacterium tuberculosis genes expressed within host cells. Microbiology145:2923–2930
    [Google Scholar]
  32. Tullius M. V., Harth G., Horwitz M. A.. 2001; High extracellular levels of Mycobacterium tuberculosis glutamine synthetase and superoxide dismutase in actively growing cultures are due to high expression and extracellular stability rather than to a protein-specific export mechanism. Infect Immun69:6348–6363[CrossRef]
    [Google Scholar]
  33. Weldingh K., Rosenkrands I., Jacobsen S., Birk Rasmussen P., Elhay M. J., Andersen P.. 1998; Two-dimensional electrophoresis for analysis of Mycobacterium tuberculosis culture filtrate and purification and characterization of six novel proteins. Infect Immun66:3492–3500
    [Google Scholar]
  34. Wiker H. G., Wilson M. A., Schoolnik G. K.. 2000; Extracytoplasmic proteins of Mycobacterium tuberculosis – mature secreted proteins often start with aspartic acid and proline. Microbiology146:1525–1533
    [Google Scholar]
  35. Wu Q. L., Kong D., Husson R. N.. 1997; A mycobacterial extracytoplasmic function sigma factor involved in survival following stress. J Bacteriol179:2922–2929
    [Google Scholar]
  36. Zhang Y., Heym B., Allen B., Young D., Cole S. T.. 1992; The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis . Nature358:591–593[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-2-529
Loading
/content/journal/micro/10.1099/00221287-148-2-529
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error