1887

Abstract

The lack of a convenient high-resolution strain-typing method has hampered the application of molecular epidemiology to the surveillance of bacteria of the complex, particularly the monitoring of strains of . With the recent availability of genome sequences for strains of the complex, novel PCR-based -typing methods have been developed, which target the variable-number tandem repeats (VNTRs) of minisatellite-like mycobacterial interspersed repetitive units (MIRUs), or exact tandem repeats (ETRs). This paper describes the identification of seven VNTR loci in H37Rv, the copy number of which varies in other strains of the complex. Six of these VNTRs were applied to a panel of 100 different isolates, and their discrimination and correlation with spoligotyping and an established set of ETRs were assessed. The number of alleles varied from three to seven at the novel VNTR loci, which differed markedly in their discrimination index. There was positive correlation between spoligotyping, ETR- and VNTR-typing. VNTR-PCR discriminates well between strains. Thirty-three allele profiles were identified by the novel VNTRs, 22 for the ETRs and 29 for spoligotyping. When VNTR- and ETR-typing results were combined, a total of 51 different profiles were identified. Digital nomenclature and databasing were intuitive. VNTRs were located both in intergenic regions and annotated ORFs, including PPE (novel glycine-asparigine-rich) proteins, a proposed source of antigenic variation, where VNTRs potentially code repeating amino acid motifs. VNTR-PCR is a valuable tool for strain typing and for the study of the global molecular epidemiology of the complex. The novel VNTR targets identified in this study should additionally increase the power of this approach.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-2-519
2002-02-01
2020-09-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/2/1480519a.html?itemId=/content/journal/micro/10.1099/00221287-148-2-519&mimeType=html&fmt=ahah

References

  1. Borgdorff M. W., Behr M. A., Nagelkerke M. J., Hopewell P. C., Small P. M.. 2000; Transmission of tuberculosis in San Francisco and its association with immigration and ethnicity. Int J Tuber Lung Dis4:287–294
    [Google Scholar]
  2. Brosch R., Pym A. S., Gordon S. V., Cole S. T.. 2001; The evolution of mycobacterial pathogenicity: clues from comparative genomics. Trends Microbiol9:452–458[CrossRef]
    [Google Scholar]
  3. Clifton-Hadley R., Wilesmith J.. 1995; An epidemiological outlook on bovine tuberculosis in the developed world. In Proceedings of the Second International Conference on Mycobacterium bovis pp178–182 Dunedin, New Zealand: University of Otago Press;
    [Google Scholar]
  4. Cole S. T., Brosch R., Parkhill J.. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544[CrossRef]
    [Google Scholar]
  5. Collins D. M.. 1998; Molecular epidemiology: Mycobacterium bovis . . In Mycobacterium – Molecular Biology and Virulence pp123–135 Edited by Ratledge C., Dale J.. Oxford: Blackwell Science;
    [Google Scholar]
  6. Costello E., O’Grady D., Flynn O., O’Brien R., Rogers M., Quigley F., Egan J., Griffin J.. 1999; Study of restriction fragment length polymorphism analysis and spoligotyping for epidemiological investigation of Mycobacterium bovis infection. J Clin Microbiol37:3217–3222
    [Google Scholar]
  7. Cousins D. V., Skuce R. A., Kazwala R. R., van Embden J. D. A.. 1998; Towards a standardised approach to DNA fingerprinting of Mycobacterium bovis . Int J Tuber Lung Dis2:471–478
    [Google Scholar]
  8. Domenech P., Barry C. E.III., Cole S. T.. 2001; Mycobacterium tuberculosis in the post-genomic age. Curr Opin Microbiol4:28–34[CrossRef]
    [Google Scholar]
  9. Durr P. A., Hewinson R. G., Clifton-Hadley R. S.. 2000; Molecular epidemiology of bovine tuberculosis I. Mycobacterium bovis genotyping. Rev Sci Tech Off Int Epizoot19:675–688
    [Google Scholar]
  10. van Embden J. D. A., Cave M. D., Crawford J. T.. 7 other authors 1993; Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standard methodology. J Clin Microbiol31:406–409
    [Google Scholar]
  11. van Embden J. D. A., van Gorkom T., Kremer K., Jansen R., Schouls L. M., van der Zeijst B. A. M.. 2000; Genetic variation and evolutionary origin of the direct repeat locus of Mycobacterium tuberculosis complex bacteria. J Bacteriol182:2393–2401[CrossRef]
    [Google Scholar]
  12. Filliol I., Ferdinand S., Negroni L., Sola C., Rastogi N.. 2000; Molecular typing of Mycobacterium tuberculosis based on variable number of tandem DNA repeats used alone and in association with spoligotyping. J Clin Microbiol38:2520–2524
    [Google Scholar]
  13. Frothingham R., Meeker-O’Connell W. A.. 1998; Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiology144:1189–1196[CrossRef]
    [Google Scholar]
  14. Goodchild A. V., Clifton-Hadley R. S.. 2001; Cattle-to-cattle transmission of Mycobacterium bovis . Tuberculosis81:23–41[CrossRef]
    [Google Scholar]
  15. Groenen P. M., Bunschoten A. E., van Soolingen D., van Embden J. D. A.. 1993; Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis : application for strain differentiation by a novel typing method. Mol Microbiol100:1057–1065
    [Google Scholar]
  16. Heersma H. F., Kremer K., van Embden J. D. A.. 1998; Computer analysis of IS 6110 RFLP patterns of Mycobacterium tuberculosis . Methods Mol Biol101:395–422
    [Google Scholar]
  17. van Helden P.. 1998; Molecular epidemiology: human tuberculosis.. In Mycobacteria – Molecular Biology and Virulence pp110–122 Edited by Ratledge C., Dale J.. Oxford: Blackwell Science;
    [Google Scholar]
  18. Hunter P. R., Gaston M. A.. 1988; Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol26:2465–2466
    [Google Scholar]
  19. Kamerbeek J., Schouls L. M., Kolk A.. 8 other authors 1997; Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol35:907–914
    [Google Scholar]
  20. Kato-Maeda M., Bifani P. J., Kreiswirth B. N., Small P. M.. 2001; The nature and consequence of genetic variability within Mycobacterium tuberculosis . J Clin Invest107:533–537[CrossRef]
    [Google Scholar]
  21. Kremer K., van Soolingen D., Frothingham R.. 9 other authors 1999; Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility. J Clin Microbiol37:2607–2618
    [Google Scholar]
  22. Magdalena J., Vachee A., Supply P., Locht C.. 1998a; Identification of a new DNA region specific for members of Mycobacterium tuberculosis complex. J Clin Microbiol36:937–943
    [Google Scholar]
  23. Magdalena J., Supply P., Locht C.. 1998b; Specific differentiation between Mycobacterium bovis BCG and virulent strains of the Mycobacterium tuberculosis complex. J Clin Microbiol36:2471–2476
    [Google Scholar]
  24. Mazars E., Lesjean S., Banuls A.-L., Gilbert M., Vincent V., Gicquel B., Tibayrenc M., Locht C., Supply P.. 2001; High-resolution minisatellite-based typing as a portable approach to global analysis Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci USA98:1901–1906[CrossRef]
    [Google Scholar]
  25. Musser J. M., Amin A., Ramaswamy S.. 2000; Negligible genetic diversity of Mycobacterium tuberculosis host immune system protein targets: evidence of limited selective pressure. Genetics155:7–16
    [Google Scholar]
  26. O’Brien R., Flynn O., Costello E., O’Grady D., Rogers M.. 2000a; Identification of a novel DNA probe for strain typing Mycobacterium bovis by restriction fragment length polymorphism analysis. J Clin Microbiol38:1723–1730
    [Google Scholar]
  27. O’Brien R., Danilowiez B. S., Bailey L., Flynn O., Costello E., O’Grady D., Rogers M.. 2000b; Characterization of the Mycobacterium bovis restriction fragment length polymorphism DNA probe pUCD and performance comparison with standard methods. J Clin Microbiol38:3362–3369
    [Google Scholar]
  28. O’Reilly L. M., Daborn C. J.. 1995; The epidemiology of Mycobacterium bovis infections in animals and man: a review. Tuber Lung Dis76:1–46
    [Google Scholar]
  29. Ramakrishnan L., Federspiel N. A., Falkow S.. 2000; Granuloma-specific expression of mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science288:1436–1439[CrossRef]
    [Google Scholar]
  30. Reid S. D., Hoe N. P., Smoot L. M., Musser J. M.. 2001; Group A Streptococcus : allelic variation, population genetics, and host–pathogen interactions. J Clin Invest107:393–399[CrossRef]
    [Google Scholar]
  31. Roring S. M. M., Brittain D., Bunschoten A. E., Hughes M. S., Skuce R. A., Neill S. D., van Embden J. D. A.. 1998; Spacer oligotyping of Mycobacterium bovis isolates compared to typing by restriction fragment length polymorphism analysis using PGRS, DR and IS 6110 . Vet Microbiol61:111–120[CrossRef]
    [Google Scholar]
  32. Roring S. M. M., Hughes M. S., Skuce R. A., Neill S. D.. 2000; Simultaneous detection and strain differentiation of Mycobacterium bovis directly from bovine tissue specimens by spoligotyping. Vet Microbiol74:227–236[CrossRef]
    [Google Scholar]
  33. Simpson E. H.. 1949; Measurement of diversity. Nature163:688[CrossRef]
    [Google Scholar]
  34. Skuce R. A., Neill S. D.. 2001; Molecular epidemiology of Mycobacterium bovis : exploiting molecular data. Tuberculosis81:169–175[CrossRef]
    [Google Scholar]
  35. Skuce R. A., Brittain D., Hughes M. S., Neill S. D.. 1996; Differentiation of Mycobacterium bovis isolates from animals by DNA typing. J Clin Microbiol34:2469–2474
    [Google Scholar]
  36. Skuce R. A., Brittain D., Smyth T., Sharp J. M., Rogers M., Hewinson R. G., Garcia-Marin J. F., Neill S. D., van Embden J. D. A.. 1998; Development of novel standardised methodology and nomenclature for the identification of Mycobacterium bovis strains EU Contract SMT4 CT96 2097 Final Report (EU Commission
    [Google Scholar]
  37. Smittipat N. L., Palittapongarnpim P.. 2000; Identification of possible loci of variable number of tandem repeats of Mycobacterium tuberculosis . Tuber Lung Dis80:69–74[CrossRef]
    [Google Scholar]
  38. van Soolingen D., Borgdoff M. W., Sebek M. M., Veen J., Dessens M., Kremer K., de Haas P. E., van Embden J. D. A.. 1999; Molecular epidemiology of tuberculosis in the Netherlands: a nationwide study from 1993 through 1997. J Infect Dis180:726–736[CrossRef]
    [Google Scholar]
  39. Sreevatsan S., Pan X., Musser J. M.. 1997; Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci USA94:9869–9874[CrossRef]
    [Google Scholar]
  40. Struelens M. J.. 1996; Consensus guidelines for the appropriate use and evaluation of microbial epidemiologic typing systems. Clin Microbiol Infect2:2–11[CrossRef]
    [Google Scholar]
  41. Supply P., Magdelena J., Himpens S., Locht C.. 1997; Identification of novel intergenic repetitive units in a mycobacterial two-component system operon. Mol Microbiol26:991–1003[CrossRef]
    [Google Scholar]
  42. Supply P., Mazars E., Lesjean S., Vincent V., Gicquel B., Locht C.. 2000; Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol36:762–771
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-2-519
Loading
/content/journal/micro/10.1099/00221287-148-2-519
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error