1887

Abstract

There are two major pathways for methionine biosynthesis in micro-organisms. Little is known about these pathways in . The authors assigned a function to the (formerly ) and (formerly ) genes of by complementing and mutants, analysing the phenotype of and mutants, and carrying out enzyme activity assays. These genes encode polypeptides belonging to the cystathionine γ-synthase family of proteins. Interestingly, the MetI protein has both cystathionine γ-synthase and -acetylhomoserine thiolyase activities, whereas the MetC protein is a cystathionine β-lyase. In , the transsulfuration and the thiolation pathways are functional . Due to its dual activity, the MetI protein participates in both pathways. The and genes form an operon, the expression of which is subject to sulfur-dependent regulation. When the sulfur source is sulfate or cysteine the transcription of this operon is high. Conversely, when the sulfur source is methionine its transcription is low. An S-box sequence, which is located upstream of the gene, is involved in the regulation of the operon. Northern blot experiments demonstrated the existence of two transcripts: a small transcript corresponding to the premature transcription termination at the terminator present in the S-box and a large one corresponding to transcription of the complete operon. When methionine levels were limiting, the amount of the full-length transcript increased. These results substantiate a model of regulation by transcription antitermination.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-2-507
2002-02-01
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/2/1480507a.html?itemId=/content/journal/micro/10.1099/00221287-148-2-507&mimeType=html&fmt=ahah

References

  1. Alexander F. W., Sandmeier E., Mehta P. K., Christen P.. 1994; Evolutionary relationships among pyridoxal-5′-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families. Eur J Biochem219:953–960[CrossRef]
    [Google Scholar]
  2. Anagnostopoulos C., Piggot P. J., Hoch J. A.. 1993; The genetic map of Bacillus subtilis .. In Bacillus subtilis and Other Gram-positive Bacteria pp425–461 Edited by Sonenshein A. L., Hoch J. A., Losick R.. Washington, DC: American Society for Mircobiology;
    [Google Scholar]
  3. Arantès O., Lereclus D.. 1991; Construction of cloning vectors for Bacillus thuringiensis . Gene108:115–119[CrossRef]
    [Google Scholar]
  4. Belfaiza J., Parsot C., Martel A., Margarita D., Cohen G. N., Saint-Girons I., de la Tour C. B.. 1986; Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. Proc Natl Acad Sci USA83:867–871[CrossRef]
    [Google Scholar]
  5. Belfaiza J., Martel A., Margarita D., Saint-Girons I.. 1998; Direct thiolation for methionine biosynthesis in Leptospira meyeri . J Bacteriol180:250–255
    [Google Scholar]
  6. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem72:248–254[CrossRef]
    [Google Scholar]
  7. Brush A., Paulus H.. 1971; The enzymic formation of O -acetylhomoserine in Bacillus subtilis and its regulation by methionine and S -adenosylmethionine. Biochem Biophys Res Commun45:735–741[CrossRef]
    [Google Scholar]
  8. Calogero S., Gardan R., Glaser P., Schweitzer J., Rapoport G., Débarbouillé M.. 1994; RocR, a novel regulatory protein controlling arginine utilization in Bacillus subtilis , belongs to the NtrC/NifA family of transcriptional activators. J Bacteriol176:1234–1241
    [Google Scholar]
  9. Cherest H., Thomas D., Surdin-Kerjan Y.. 1993; Cysteine biosynthesis in Saccharomyces cerevisiae occurs through the transsulfuration pathway which has been built up by enzyme recruitment. J Bacteriol175:5366–5374
    [Google Scholar]
  10. Danchin A.. 1989; Homeotopic transformation and the origin of translation. Prog Biophys Mol Biol54:81–86[CrossRef]
    [Google Scholar]
  11. Duchange N., Zakin M. M., Ferrara P., Saint-Girons I., Park I., Tran S. V., Py M. C., Cohen G. N.. 1983; Structure of the metJBLF cluster in Escherichia coli K12. Sequence of the metB structural gene and of the 5′- and 3′-flanking regions of the metBL operon. J Biol Chem258:14868–14871
    [Google Scholar]
  12. Ferrari F. A., Nguyen A., Lang D., Hoch J. A.. 1983; Construction and properties of an integrable plasmid for Bacillus subtilis . J Bacteriol154:1513–1515
    [Google Scholar]
  13. Glatron M.-F., Rapoport G.. 1972; Biosynthesis of the parasporal inclusion of Bacillus thuringiensis : half-life of its corresponding messenger RNA. Biochimie54:1291–1301[CrossRef]
    [Google Scholar]
  14. Greene R. C.. 1996; Biosynthesis of methionine. . In Escherichia coli and Salmonella: Cellular and Molecular Biology , 2nd edn. pp542–560 Edited by Neidhardt F. C.. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Grundy F. J., Henkin T. M.. 1998; The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in Gram-positive bacteria. Mol Microbiol30:737–749[CrossRef]
    [Google Scholar]
  16. Henkin T. M.. 1996; Control of transcription termination in prokaryotes. Annu Rev Genet30:35–57[CrossRef]
    [Google Scholar]
  17. Jensen R. A.. 1976; Enzyme recruitment in evolution of new function. Annu Rev Microbiol30:409–425[CrossRef]
    [Google Scholar]
  18. Jocelyn P. C.. 1987; Spectrophotometric assay of thiols. Methods Enzymol143:44–67
    [Google Scholar]
  19. Kanzaki H., Kobayashi M., Nagasawa T., Yamada H.. 1986; Distribution of two kinds of cystathionine γ-synthase in various bacteria. FEMS Microbiol Lett33:65–68
    [Google Scholar]
  20. Kanzaki H., Kobayashi M., Nagasawa T., Yamada H.. 1987; Purification and characterization of cystathionine γ-synthase type II from Bacillus sphaericus . Eur J Biochem163:105–112[CrossRef]
    [Google Scholar]
  21. Kerr D. S.. 1971; O -Acetylhomoserine thiolase from Neurospora . Purification and consideration of its function in homocysteine and methionine synthesis. J Biol Chem246:95–102
    [Google Scholar]
  22. Kim L., Mogk A., Schumann W.. 1996; A xylose-inducible Bacillus subtilis integration vector and its application. Gene181:71–76[CrossRef]
    [Google Scholar]
  23. Kredich N. M.. 1996; Biosynthesis of cysteine. . In Escherichia coli and Salmonella: Cellular and Molecular Biology , 2nd edn. pp514–527 Edited by Neidhardt F. C.. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Kunst F., Rapoport G.. 1995; Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis . J Bacteriol177:2403–2407
    [Google Scholar]
  25. Mansilla M. C., Albanesi D., de Mendoza D.. 2000; Transcriptional control of the sulfur-regulated cysH operon, containing genes involved in l-cysteine biosynthesis in Bacillus subtilis . J Bacteriol182:5885–5892[CrossRef]
    [Google Scholar]
  26. Martel A., Le Goffic F., Bouthier de la Tour C.. 1987; Pyridoxal 5′-phosphate binding site of Escherichia coli β-cystathionase and cystathionine γ-synthase: comparison of their sequences. Biochem Biophys Res Commun147:565–571[CrossRef]
    [Google Scholar]
  27. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Munier H., Gilles A. M., Glaser P., Krin E., Danchin A., Sarfati R., Barzu O.. 1991; Isolation and characterization of catalytic and calmodulin-binding domains of Bordetella pertussis adenylate cyclase. Eur J Biochem196:469–474[CrossRef]
    [Google Scholar]
  29. Murooka Y., Kakihara K., Miwa T., Seto K., Harada T.. 1977; O -Alkylhomoserine synthesis catalyzed by O -acetylhomoserine thiolase in microorganisms. J Bacteriol130:62–73
    [Google Scholar]
  30. Murphy E.. 1985; Nucleotide sequence of a spectinomycin adenyltransferase AAD(9) determinant from Staphylococcus aureus and its relationship to AAD(3′) (9. Mol Gen Genet200:33–39[CrossRef]
    [Google Scholar]
  31. Oda M., Kobayashi N., Ito A., Kurusu Y., Taira K.. 2000; cis -Acting regulatory sequences for antitermination in the transcript of the Bacillus subtilis hut operon and histidine-dependent binding of HutP to the transcript containing the regulatory sequences. Mol Microbiol35:1244–1254[CrossRef]
    [Google Scholar]
  32. Ozaki H., Shiio I.. 1982; Methionine biosynthesis in Brevibacterium flavum : properties and essential role of O -acetylhomoserine thiolase. J Biochem91:1163–1171
    [Google Scholar]
  33. Rutberg B.. 1997; Antitermination of transcription of catabolic operons. Mol Microbiol23:413–421[CrossRef]
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Sanger F., Nicklen S., Coulson A. R.. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA74:5463–5467[CrossRef]
    [Google Scholar]
  36. Sekowska A., Kung H. F., Danchin A.. 2000; Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J Mol Microbiol Biotechnol2:145–177
    [Google Scholar]
  37. Stülke J., Martin-Verstraete I., Zagorec M., Rose M., Klier A., Rapoport G.. 1997; Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol Microbiol25:65–78[CrossRef]
    [Google Scholar]
  38. Tabor S., Richardson C. C.. 1985; A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA82:1074–1078[CrossRef]
    [Google Scholar]
  39. Thomas D., Surdin-Kerjan Y.. 1997; Metabolism of sulfur amino acids in Saccharomyces cerevisiae . Microbiol Mol Biol Rev61:503–532
    [Google Scholar]
  40. Trieu-Cuot P., Courvalin P.. 1983; Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3′5′-aminoglycoside phosphotransferase type III. Gene23:331–341[CrossRef]
    [Google Scholar]
  41. Uren J. R.. 1987; Cystathionine β-lyase from Escherichia coli . Methods Enzymol143:483–486
    [Google Scholar]
  42. Van der Ploeg J. R., Barone M., Leisinger T.. 2001; Expression of the Bacillus subtilis sulphonate–sulphur utilization genes is regulated at the levels of transcription initiation and termination. Mol Microbiol39:1356–1365[CrossRef]
    [Google Scholar]
  43. Wach A.. 1996; PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in Scerevisiae. Yeast12:259–265[CrossRef]
    [Google Scholar]
  44. Weissbach H., Brot N.. 1991; Regulation of methionine synthesis in Escherichia coli . Mol Microbiol5:1593–1597[CrossRef]
    [Google Scholar]
  45. Yamagata S.. 1984; O -Acetylhomoserine thiolase of the fission yeast Schizosaccharomyces pombe : partial purification, characterization, and its probable role in homocysteine biosynthesis. J Biochem96:1511–1523
    [Google Scholar]
  46. Yamagata S.. 1987; O -Acetyl-l-serine- O -acetyl-l-homoserine thiolase from Saccharomyces cerevisiae . Methods Enzymol143:478–483
    [Google Scholar]
  47. Yamagata S.. 1989; Roles of O -acetyl-l-homoserine thiolases in micro-organisms. Biochimie71:1125–1143[CrossRef]
    [Google Scholar]
  48. Yamagata S., Takeshima K.. 1976; O -Acetylserine and O -acetylhomoserine thiolase of yeast. Further purification and characterization as a pyridoxal enzyme. J Biochem80:777–785
    [Google Scholar]
  49. Yocum R. R., Perkins J. B., Howitt C. L., Pero J.. 1996; Cloning and characterization of the metE gene encoding S -adenosylmethionine synthetase from Bacillus subtilis . J Bacteriol178:4604–4610
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-2-507
Loading
/content/journal/micro/10.1099/00221287-148-2-507
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error