1887

Abstract

There are two major pathways for methionine biosynthesis in micro-organisms. Little is known about these pathways in . The authors assigned a function to the (formerly ) and (formerly ) genes of by complementing and mutants, analysing the phenotype of and mutants, and carrying out enzyme activity assays. These genes encode polypeptides belonging to the cystathionine γ-synthase family of proteins. Interestingly, the MetI protein has both cystathionine γ-synthase and -acetylhomoserine thiolyase activities, whereas the MetC protein is a cystathionine β-lyase. In , the transsulfuration and the thiolation pathways are functional . Due to its dual activity, the MetI protein participates in both pathways. The and genes form an operon, the expression of which is subject to sulfur-dependent regulation. When the sulfur source is sulfate or cysteine the transcription of this operon is high. Conversely, when the sulfur source is methionine its transcription is low. An S-box sequence, which is located upstream of the gene, is involved in the regulation of the operon. Northern blot experiments demonstrated the existence of two transcripts: a small transcript corresponding to the premature transcription termination at the terminator present in the S-box and a large one corresponding to transcription of the complete operon. When methionine levels were limiting, the amount of the full-length transcript increased. These results substantiate a model of regulation by transcription antitermination.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-2-507
2002-02-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/2/1480507a.html?itemId=/content/journal/micro/10.1099/00221287-148-2-507&mimeType=html&fmt=ahah

References

  1. Alexander, F. W., Sandmeier, E., Mehta, P. K. & Christen, P. ( 1994; ). Evolutionary relationships among pyridoxal-5′-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families. Eur J Biochem 219, 953-960.[CrossRef]
    [Google Scholar]
  2. Anagnostopoulos, C., Piggot, P. J. & Hoch, J. A. ( 1993; ). The genetic map of Bacillus subtilis. In Bacillus subtilis and Other Gram-positive Bacteria , pp. 425-461. Edited by A. L. Sonenshein, J. A. Hoch & R. Losick. Washington, DC:American Society for Mircobiology.
  3. Arantès, O. & Lereclus, D. ( 1991; ). Construction of cloning vectors for Bacillus thuringiensis. Gene 108, 115-119.[CrossRef]
    [Google Scholar]
  4. Belfaiza, J., Parsot, C., Martel, A., de la Tour, C. B., Margarita, D., Cohen, G. N. & Saint-Girons, I. ( 1986; ). Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. Proc Natl Acad Sci USA 83, 867-871.[CrossRef]
    [Google Scholar]
  5. Belfaiza, J., Martel, A., Margarita, D. & Saint-Girons, I. ( 1998; ). Direct thiolation for methionine biosynthesis in Leptospira meyeri. J Bacteriol 180, 250-255.
    [Google Scholar]
  6. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248-254.[CrossRef]
    [Google Scholar]
  7. Brush, A. & Paulus, H. ( 1971; ). The enzymic formation of O-acetylhomoserine in Bacillus subtilis and its regulation by methionine and S-adenosylmethionine. Biochem Biophys Res Commun 45, 735-741.[CrossRef]
    [Google Scholar]
  8. Calogero, S., Gardan, R., Glaser, P., Schweitzer, J., Rapoport, G. & Débarbouillé, M. ( 1994; ). RocR, a novel regulatory protein controlling arginine utilization in Bacillus subtilis, belongs to the NtrC/NifA family of transcriptional activators. J Bacteriol 176, 1234-1241.
    [Google Scholar]
  9. Cherest, H., Thomas, D. & Surdin-Kerjan, Y. ( 1993; ). Cysteine biosynthesis in Saccharomyces cerevisiae occurs through the transsulfuration pathway which has been built up by enzyme recruitment. J Bacteriol 175, 5366-5374.
    [Google Scholar]
  10. Danchin, A. ( 1989; ). Homeotopic transformation and the origin of translation. Prog Biophys Mol Biol 54, 81-86.[CrossRef]
    [Google Scholar]
  11. Duchange, N., Zakin, M. M., Ferrara, P., Saint-Girons, I., Park, I., Tran, S. V., Py, M. C. & Cohen, G. N. ( 1983; ). Structure of the metJBLF cluster in Escherichia coli K12. Sequence of the metB structural gene and of the 5′- and 3′-flanking regions of the metBL operon. J Biol Chem 258, 14868-14871.
    [Google Scholar]
  12. Ferrari, F. A., Nguyen, A., Lang, D. & Hoch, J. A. ( 1983; ). Construction and properties of an integrable plasmid for Bacillus subtilis. J Bacteriol 154, 1513-1515.
    [Google Scholar]
  13. Glatron, M.-F. & Rapoport, G. ( 1972; ). Biosynthesis of the parasporal inclusion of Bacillus thuringiensis: half-life of its corresponding messenger RNA. Biochimie 54, 1291-1301.[CrossRef]
    [Google Scholar]
  14. Greene, R. C. (1996). Biosynthesis of methionine. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn, pp. 542–560. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  15. Grundy, F. J. & Henkin, T. M. ( 1998; ). The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in Gram-positive bacteria. Mol Microbiol 30, 737-749.[CrossRef]
    [Google Scholar]
  16. Henkin, T. M. ( 1996; ). Control of transcription termination in prokaryotes. Annu Rev Genet 30, 35-57.[CrossRef]
    [Google Scholar]
  17. Jensen, R. A. ( 1976; ). Enzyme recruitment in evolution of new function. Annu Rev Microbiol 30, 409-425.[CrossRef]
    [Google Scholar]
  18. Jocelyn, P. C. ( 1987; ). Spectrophotometric assay of thiols. Methods Enzymol 143, 44-67.
    [Google Scholar]
  19. Kanzaki, H., Kobayashi, M., Nagasawa, T. & Yamada, H. ( 1986; ). Distribution of two kinds of cystathionine γ-synthase in various bacteria. FEMS Microbiol Lett 33, 65-68.
    [Google Scholar]
  20. Kanzaki, H., Kobayashi, M., Nagasawa, T. & Yamada, H. ( 1987; ). Purification and characterization of cystathionine γ-synthase type II from Bacillus sphaericus. Eur J Biochem 163, 105-112.[CrossRef]
    [Google Scholar]
  21. Kerr, D. S. ( 1971; ). O-Acetylhomoserine thiolase from Neurospora. Purification and consideration of its function in homocysteine and methionine synthesis. J Biol Chem 246, 95-102.
    [Google Scholar]
  22. Kim, L., Mogk, A. & Schumann, W. ( 1996; ). A xylose-inducible Bacillus subtilis integration vector and its application. Gene 181, 71-76.[CrossRef]
    [Google Scholar]
  23. Kredich, N. M. (1996). Biosynthesis of cysteine. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn, pp. 514–527. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  24. Kunst, F. & Rapoport, G. ( 1995; ). Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol 177, 2403-2407.
    [Google Scholar]
  25. Mansilla, M. C., Albanesi, D. & de Mendoza, D. ( 2000; ). Transcriptional control of the sulfur-regulated cysH operon, containing genes involved in l-cysteine biosynthesis in Bacillus subtilis. J Bacteriol 182, 5885-5892.[CrossRef]
    [Google Scholar]
  26. Martel, A., Bouthier de la Tour, C. & Le Goffic, F. ( 1987; ). Pyridoxal 5′-phosphate binding site of Escherichia coli β-cystathionase and cystathionine γ-synthase: comparison of their sequences. Biochem Biophys Res Commun 147, 565-571.[CrossRef]
    [Google Scholar]
  27. Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  28. Munier, H., Gilles, A. M., Glaser, P., Krin, E., Danchin, A., Sarfati, R. & Barzu, O. ( 1991; ). Isolation and characterization of catalytic and calmodulin-binding domains of Bordetella pertussis adenylate cyclase. Eur J Biochem 196, 469-474.[CrossRef]
    [Google Scholar]
  29. Murooka, Y., Kakihara, K., Miwa, T., Seto, K. & Harada, T. ( 1977; ). O-Alkylhomoserine synthesis catalyzed by O-acetylhomoserine thiolase in microorganisms. J Bacteriol 130, 62-73.
    [Google Scholar]
  30. Murphy, E. ( 1985; ). Nucleotide sequence of a spectinomycin adenyltransferase AAD(9) determinant from Staphylococcus aureus and its relationship to AAD(3′) (9). Mol Gen Genet 200, 33-39.[CrossRef]
    [Google Scholar]
  31. Oda, M., Kobayashi, N., Ito, A., Kurusu, Y. & Taira, K. ( 2000; ). cis-Acting regulatory sequences for antitermination in the transcript of the Bacillus subtilis hut operon and histidine-dependent binding of HutP to the transcript containing the regulatory sequences. Mol Microbiol 35, 1244-1254.[CrossRef]
    [Google Scholar]
  32. Ozaki, H. & Shiio, I. ( 1982; ). Methionine biosynthesis in Brevibacterium flavum: properties and essential role of O-acetylhomoserine thiolase. J Biochem 91, 1163-1171.
    [Google Scholar]
  33. Rutberg, B. ( 1997; ). Antitermination of transcription of catabolic operons. Mol Microbiol 23, 413-421.[CrossRef]
    [Google Scholar]
  34. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74, 5463-5467.[CrossRef]
    [Google Scholar]
  36. Sekowska, A., Kung, H. F. & Danchin, A. ( 2000; ). Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J Mol Microbiol Biotechnol 2, 145-177.
    [Google Scholar]
  37. Stülke, J., Martin-Verstraete, I., Zagorec, M., Rose, M., Klier, A. & Rapoport, G. ( 1997; ). Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol Microbiol 25, 65-78.[CrossRef]
    [Google Scholar]
  38. Tabor, S. & Richardson, C. C. ( 1985; ). A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82, 1074-1078.[CrossRef]
    [Google Scholar]
  39. Thomas, D. & Surdin-Kerjan, Y. ( 1997; ). Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61, 503-532.
    [Google Scholar]
  40. Trieu-Cuot, P. & Courvalin, P. ( 1983; ). Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3′5′-aminoglycoside phosphotransferase type III. Gene 23, 331-341.[CrossRef]
    [Google Scholar]
  41. Uren, J. R. ( 1987; ). Cystathionine β-lyase from Escherichia coli. Methods Enzymol 143, 483-486.
    [Google Scholar]
  42. Van der Ploeg, J. R., Barone, M. & Leisinger, T. ( 2001; ). Expression of the Bacillus subtilis sulphonate–sulphur utilization genes is regulated at the levels of transcription initiation and termination. Mol Microbiol 39, 1356-1365.[CrossRef]
    [Google Scholar]
  43. Wach, A. ( 1996; ). PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12, 259-265.[CrossRef]
    [Google Scholar]
  44. Weissbach, H. & Brot, N. ( 1991; ). Regulation of methionine synthesis in Escherichia coli. Mol Microbiol 5, 1593-1597.[CrossRef]
    [Google Scholar]
  45. Yamagata, S. ( 1984; ). O-Acetylhomoserine thiolase of the fission yeast Schizosaccharomyces pombe: partial purification, characterization, and its probable role in homocysteine biosynthesis. J Biochem 96, 1511-1523.
    [Google Scholar]
  46. Yamagata, S. ( 1987; ). O-Acetyl-l-serine-O-acetyl-l-homoserine thiolase from Saccharomyces cerevisiae. Methods Enzymol 143, 478-483.
    [Google Scholar]
  47. Yamagata, S. ( 1989; ). Roles of O-acetyl-l-homoserine thiolases in micro-organisms. Biochimie 71, 1125-1143.[CrossRef]
    [Google Scholar]
  48. Yamagata, S. & Takeshima, K. ( 1976; ). O-Acetylserine and O-acetylhomoserine thiolase of yeast. Further purification and characterization as a pyridoxal enzyme. J Biochem 80, 777-785.
    [Google Scholar]
  49. Yocum, R. R., Perkins, J. B., Howitt, C. L. & Pero, J. ( 1996; ). Cloning and characterization of the metE gene encoding S-adenosylmethionine synthetase from Bacillus subtilis. J Bacteriol 178, 4604-4610.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-2-507
Loading
/content/journal/micro/10.1099/00221287-148-2-507
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error