1887

Abstract

A phage-displayed human single-chain Fv antibody library (6·7×10 members) was used to select probes specific to components associated with the surface of elementary bodies (EBs). Each of 15 antibodies was characterized by ELISA, dot-blot, immunoblot and immunocytochemistry, resulting in the identification of several new chlamydial components associated with the surface of EBs. In addition, six antibodies were specific for host-cell components associated with the surface of EBs. While phage display has been used effectively to produce specific antibodies for purified components, these data show that this technology is suitable for selection of specific probes from complex antigens such as the surface of a microbial pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-2-443
2002-02-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/2/1480443a.html?itemId=/content/journal/micro/10.1099/00221287-148-2-443&mimeType=html&fmt=ahah

References

  1. Breitling, F., Dübel, S., Seehaus, T., Klewinghaus, I. & Little, M. ( 1991; ). A surface expression vector for antibody screening. Gene 104, 147-153.[CrossRef]
    [Google Scholar]
  2. Clackson, T., Hoogenboom, H. R., Griffiths, A. D. & Winter, G. ( 1991; ). Making antibody fragments using phage display libraries. Nature 352, 624-628.[CrossRef]
    [Google Scholar]
  3. Evan, G. I., Lewis, G. K., Ramsay, G. & Bishop, J. M. ( 1985; ). Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 5, 3610-3616.
    [Google Scholar]
  4. Fan, J. & Stephens, R. S. ( 1997; ). Antigen conformation dependence of Chlamydia trachomatis infectivity neutralization. J Infect Dis 176, 713-721.[CrossRef]
    [Google Scholar]
  5. Gough, K. C., Li, Y., Vaughan, T. J., Williams, A. J., Cockburn, W. & Whitelam, G. C. ( 1999; ). Selection of phage antibodies to surface epitopes of Phytophthora infestans. J Immunol Methods 228, 97-108.[CrossRef]
    [Google Scholar]
  6. Grimwood, J. & Stephens, R. S. ( 1999; ). Computational analysis of the polymorphic membrane protein superfamily of Chlamydia trachomatis and Chlamydia pneumoniae. Microb Comp Genomics 4, 187-201.[CrossRef]
    [Google Scholar]
  7. Grimwood, J., Olinger, L. & Stephens, R. S. ( 2001; ). Expression of Chlamydia pneumoniae polymorphic membrane protein family genes. Infect Immun 69, 2383-2389.[CrossRef]
    [Google Scholar]
  8. Hatch, T. P., Allan, I. & Pearce, J. H. ( 1984; ). Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp. J Bacteriol 157, 13-20.
    [Google Scholar]
  9. Hoogenboom, H. R., Griffiths, A. D., Johnson, K. S., Chiswell, D. J., Hudson, P. & Winter, G. ( 1991; ). Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res 19, 4133-4137.[CrossRef]
    [Google Scholar]
  10. Koehler, J. E., Burgess, R. R., Thompson, N. E. & Stephens, R. S. ( 1990; ). Chlamydia trachomatis RNA polymerase major sigma subunit. Sequence and structural comparison of conserved and unique regions with Escherichia coli sigma 70 and Bacillus subtilis sigma 43. J Biol Chem 265, 13206-13214.
    [Google Scholar]
  11. Longbottom, D., Russell, M., Dunbar, S. M., Jones, G. E. & Herring, A. J. ( 1998; ). Molecular cloning and characterization of the genes encoding the highly immunogenic cluster of 90-kilodalton envelope proteins from the Chlamydia psittaci subtype that causes abortion in sheep. Infect Immun 66, 1317-1324.
    [Google Scholar]
  12. Marks, J. D., Hoogenboom, H. R., Bonnert, T. P., McCafferty, J., Griffiths, A. D. & Winter, G. ( 1991; ). By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222, 581-597.[CrossRef]
    [Google Scholar]
  13. Matsumoto, A. ( 1981; ). Electron microscopic observations of surface projections and related intracellular structures of Chlamydia organisms. J Electron Microsc 30, 315-320.
    [Google Scholar]
  14. McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. ( 1990; ). Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552-554.[CrossRef]
    [Google Scholar]
  15. Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  16. Schachter, J. ( 1999; ). Infection and disease epidemiology. In Chlamydia: Intracellular Biology, Pathogenesis, and Immunity , pp. 139-169. Edited by R. S. Stephens. Washington, DC:American Society for Microbiology.
  17. Schier, R., Marks, J. D., Wolf, E. J. & 8 other authors ( 1995; ). In vitro and in vivo characterization of a human anti-c-erbB-2 single-chain Fv isolated from a filamentous phage antibody library. Immunotechnology 1, 73–81.[CrossRef]
    [Google Scholar]
  18. Schier, R., Bye, J., Apell, G., McCall, A., Adams, G. P., Malmqvist, M., Weiner, L. M. & Marks, J. D. ( 1996; ). Isolation of high-affinity monomeric human anti-c-erbB-2 single chain Fv using affinity-driven selection. J Mol Biol 255, 28-43.[CrossRef]
    [Google Scholar]
  19. Sheets, M. D., Amersdorfer, P., Finnern, R. & 7 other authors ( 1998; ). Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci USA 95, 6157–6162.[CrossRef]
    [Google Scholar]
  20. Söderlund, G. & Kihlström, E. ( 1982; ). Physico-chemical surface properties of elementary bodies from different serotypes of Chlamydia trachomatis and their interaction with mouse fibroblasts. Infect Immun 36, 893-899.
    [Google Scholar]
  21. Stephens, R. S. (editor) (1999). Chlamydia: Intracellular Biology, Pathogenesis, and Immunity. Washington, DC: American Society for Microbiology.
  22. Stephens, R. S., Tam, M. R., Kuo, C. C. & Nowinski, R. C. ( 1982; ). Monoclonal antibodies to Chlamydia trachomatis: antibody specificities and antigen characterization. J Immunol 128, 1083-1089.
    [Google Scholar]
  23. Stephens, R. S., Kalman, S., Lammel, C. & 9 other authors ( 1998; ). Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759.[CrossRef]
    [Google Scholar]
  24. Stuart, E. S., Wyrick, P. B., Choong, J., Stoler, S. B. & MacDonald, A. B. ( 1991; ). Examination of chlamydial glycolipid with monoclonal antibodies: cellular distribution and epitope binding. Immunol 74, 740-747.
    [Google Scholar]
  25. Su, H., Zhang, Y. X., Barrera, O., Watkins, N. G. & Caldwell, H. D. ( 1988; ). Differential effect of trypsin on infectivity of Chlamydia trachomatis: loss of infectivity requires cleavage of major outer-membrane protein variable domains II and IV. Infect Immun 56, 2094-2100.
    [Google Scholar]
  26. Swanson, A. F. & Kuo, C. C. ( 1990; ). Identification of lectin-binding proteins in Chlamydia species. Infect Immun 58, 502-507.
    [Google Scholar]
  27. Swanson, A. F. & Kuo, C. C. ( 1994; ). Binding of the glycan of the major outer-membrane protein of Chlamydia trachomatis to HeLa cells. Infect Immun 62, 24-28.
    [Google Scholar]
  28. Tanzer, R. J. & Hatch, T. P. ( 2001; ). Characterization of outer-membrane proteins in Chlamydia trachomatis LGV serovar L2. J Bacteriol 183, 2686-2690.[CrossRef]
    [Google Scholar]
  29. Tanzer, R. J., Longbottom, D. & Hatch, T. P. ( 2001; ). Identification of polymorphic outer-membrane proteins of Chlamydia psittaci 6BC. Infect Immun 69, 2428-2434.[CrossRef]
    [Google Scholar]
  30. Wolf, K., Fischer, E., Mead, D., Zhong, G., Peeling, R., Whitmire, B. & Caldwell, H. D. ( 2001; ). Chlamydia pneumoniae major outer-membrane protein is a surface-exposed antigen that elicits antibodies primarily directed against conformation-dependent determinants. Infect Immun 69, 3082-3091.[CrossRef]
    [Google Scholar]
  31. Zhang, J. P. & Stephens, R. S. ( 1992; ). Mechanism of C. trachomatis attachment to eukaryotic host cells. Cell 69, 861-869.[CrossRef]
    [Google Scholar]
  32. Zhang, Y. X., Stewart, S., Joseph, T., Taylor, H. R. & Caldwell, H. D. ( 1987; ). Protective monoclonal antibodies recognize epitopes located on the major outer-membrane protein of Chlamydia trachomatis. J Immunol 138, 575-581.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-2-443
Loading
/content/journal/micro/10.1099/00221287-148-2-443
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error