1887

Abstract

The 23K chromosome was analysed by pulsed-field gel electrophoresis after digestion with the restriction enzymes I, I and I. The chromosome size was estimated to be 1845±80 kb. The use of I-I, specific for genes encoding 23S rRNAs, showed that seven loci were present, on 40% of the chromosome. The seven clusters were mapped and their orientation was determined, allowing the position of the replication origin to be estimated. Partial I-I digestions were used to construct a backbone and the different restriction fragments obtained with I, I and I were assembled to a physical map by Southern hybridization. Eleven gene clusters previously identified were mapped, as well as 25 new loci located randomly on the chromosome and 11 regions flanking the gene clusters. A total of 47 clusters were thus mapped on chromosome. The new loci were sequenced, allowing the identification of 73 complete or incomplete coding sequences. Among these 73 new genes of , the function of 36 could be deduced from their similarity to known genes described in databases. However, 10 genes had no homologues, 10 encoded proteins similar to proteins of unknown function and 17 were similar to hypothetical proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-2-421
2002-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/2/1480421a.html?itemId=/content/journal/micro/10.1099/00221287-148-2-421&mimeType=html&fmt=ahah

References

  1. Anderson D. G., McKay L. L. 1983; Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol 46:549–552
    [Google Scholar]
  2. Berthier F., Zagorec M., Ehrlich S. D., Morel-Deville F., Champomier-Vergès M. C. 1996; Efficient transformation of Lactobacillus sake by electroporation. Microbiology 142:1273–1279 [CrossRef]
    [Google Scholar]
  3. Bettenbrock K., Alpert C. A. 1998; The gal genes for the Leloir pathway of Lactobacillus casei 64H. Appl Environ Microbiol 64:2013–2019
    [Google Scholar]
  4. Bolotin A., Wincker P., Mauger S., Jaillon O., Malarme K., Weissenbach J., Ehrlich S. D., Sorokin A. 2001; The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753 [CrossRef]
    [Google Scholar]
  5. Champomier-Vergès M. C., Chaillou S., Cornet M., Zagorec M. 2001; Lactobacillus sakei : recent developments and future prospects. Res Microbiol 152:839–848 [CrossRef]
    [Google Scholar]
  6. Chevallier B., Hubert J.-C., Kammerer B. 1994; Determination of chromosome size and number of rrn loci in Lactobacillus plantarum by pulse-field gel electrophoresis. FEMS Microbiol Lett 120:51–56 [CrossRef]
    [Google Scholar]
  7. Cole S. T., Saint-Girons I. 1994; Bacterial genomics. FEMS Microbiol Rev 14:139–160 [CrossRef]
    [Google Scholar]
  8. Condon C., Liveris D., Schwartz L., Squires C. L. 1995; rRNA operon multiplicity in Escherichia coli and the physiological implications of rrn inactivation. J Bacteriol 177:4152–4156
    [Google Scholar]
  9. De Man J. C., Rogosa M., Sharpe M. E. 1960; A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135 [CrossRef]
    [Google Scholar]
  10. Gordon D., Abajian C., Green P. 1998; Consed : a graphical tool for sequence finishing. Genome Res 8:198–202
    [Google Scholar]
  11. Hammes W. P., Vogel R. F. 1995; The genus Lactobacillus . In The Genera of Lactic Acid Bacteria pp 18–54 Edited by Wood B. J. B., Holzapfel W. H. Glasgow, UK: Blackie Academic & Professional;
    [Google Scholar]
  12. Klappenbach J. A., Dunbar J., Schmidt T. M. 2000; rRNA operon copy number reflects ecological strategies of bacteria. J Bacteriol 66:1328–1333
    [Google Scholar]
  13. Knauf H. J., Vogel R. F., Hammes W. P. 1992; Cloning, sequence, and phenotypic expression of katA , which encodes the catalase of Lactobacillus sake LTH677. Appl Environ Microbiol 58:832–839
    [Google Scholar]
  14. Krawiec S., Riley M. 1990; Organization of the bacterial chromosome. FEMS Microbiol Rev 54:502–539
    [Google Scholar]
  15. Lauret R., Morel-Deville F., Berthier F., Postma P., Ehrlich S. D., Zagorec M., Champomier-Vergès M. C. 1996; Carbohydrate utilization in Lactobacillus sake . Appl Environ Microbiol 62:1922–1927
    [Google Scholar]
  16. Le Bourgeois P., Lautier M., Mata M., Ritzenthaler P. 1992; Physical and genetic map of the chromosome of Lactococcus lactis subsp. lactis IL1403. J Bacteriol 174:6752–6762
    [Google Scholar]
  17. Leloup L., Ehrlich S. D., Zagorec M., Morel-Deville F. 1997; Single-crossover integration in the Lactobacillus sake chromosome and insertional inactivation of the ptsI and lacL genes. Appl Environ Microbiol 63:2117–2123
    [Google Scholar]
  18. Lowe T. M., Eddy S. R. 1997; tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964 [CrossRef]
    [Google Scholar]
  19. Malleret C., Lauret R., Ehrlich S. D., Morel-Deville F., Zagorec M. 1998; Disruption of the sole ldhL gene in Lactobacillus sakei prevents the production of both l- and d-lactate. Microbiology 144:3327–3333 [CrossRef]
    [Google Scholar]
  20. Marceau A., Méra T., Zagorec M., Champomier-Vergès M. C. 2001; Protein expression under uracil privation. FEMS Microbiol Lett 200:49–52 [CrossRef]
    [Google Scholar]
  21. Morel-Deville F., Fauvel F., Morel P. 1998; Two-component signal-transducing systems involved in stress responses and vancomycin susceptibility in Lactobacillus sakei . Microbiology 144:2873–2883 [CrossRef]
    [Google Scholar]
  22. Obst M., Meding E. R., Vogel R. F., Hammes W. P. 1995; Two genes encoding the β-galactosidase of Lactobacillus sake . Microbiology 141:3059–3066 [CrossRef]
    [Google Scholar]
  23. Prod’hom G., Lagier B., Pelicic V., Hance A. J., Gicquel B., Guilhot C. 1998; A reliable amplification technique for the characterization of genomic DNA sequences flanking insertion sequences. FEMS Microbiol Lett 158:75–81 [CrossRef]
    [Google Scholar]
  24. Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M.-A., Barrell B. 2000; Artemis : sequence visualization and annotation. Bioinformatics 16:944–945 [CrossRef]
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Schmidt G., Hertel C., Hammes W. P. 1999; Molecular characterization of the dnaK operon of Lactobacillus sakei LTH681. Syst Appl Microbiol 22:321–328 [CrossRef]
    [Google Scholar]
  27. Skaugen M., Nes I. F. 1994; Transposition in Lactobacillus sake and its abolition of lactocin S production by insertion of IS 1163 , a new member of the IS3 family. Appl Environ Microbiol 60:2818–2825
    [Google Scholar]
  28. Skaugen M., Nes I. F. 2000; Transposition in Lactobacillus sakei : inactivation of a second lactocin S operon by the insertion of IS 1520 , a new member of the IS 3 family of insertion sequences. Microbiology 146:1163–1169
    [Google Scholar]
  29. Sneath P. H., Mair N. S., Sharpe M. E., Holt J. G. editors 1986 Bergey’s Manual of Systematic Bacteriology vol 2 Baltimore: Williams & Wilkins;
    [Google Scholar]
  30. Stentz R. 1998 Etude de la régulation globale du métabolisme des sucres chez Lactobacillus sakei Thèse de doctorat de l’Université Paris VII
    [Google Scholar]
  31. Stentz R., Zagorec M. 1999; Ribose utilization in Lactobacillus sakei : analysis of the regulation of the rbs operon and putative involvement of a new transporter. J Mol Microbiol Biotechnol 1:165–173
    [Google Scholar]
  32. Stentz R., Lauret R., Ehrlich S. D., Morel-Deville F., Zagorec M. 1997; Molecular cloning and analysis of the ptsHI operon in Lactobacillus sake . Appl Environ Microbiol 63:2111–2116
    [Google Scholar]
  33. Stentz R., Cornet M., Chaillou S., Zagorec M. 2001; Adaptation of Lactobacillus sakei to meat: a new regulatory mechanism of ribose utilization?. Lait 81:131–138 [CrossRef]
    [Google Scholar]
  34. Wagner E., Doskar J., Götz F. 1998; Physical and genetic map of the genome of Staphylococcus carnosus TM300. Microbiology 144:509–517 [CrossRef]
    [Google Scholar]
  35. Zé-Zé L., Tenreiro R., Brito L., Santos M. A., Paveia H. 1998; Physical map of the genome of Oenococcus oeni PSU-1 and localization of genetic markers. Microbiology 144:1145–1156 [CrossRef]
    [Google Scholar]
  36. Zé-Zé L., Tenreiro R., Paveia H. 2000; The Oenococcus oeni genome: physical and genetic mapping of strain GM and comparison with the genome of a ‘divergent’ strain, PSU-1. Microbiology 146:3195–3204
    [Google Scholar]
  37. Zuñiga M., Champomier-Vergès M. C., Zagorec M., Pérez-Martı́nez G. 1998; Structural and functional analysis of the gene cluster encoding the enzymes of the arginine deiminase pathway of Lactobacillus sake . J Bacteriol 180:4154–4159
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-2-421
Loading
/content/journal/micro/10.1099/00221287-148-2-421
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error