1887

Abstract

Genes encoding two ribonucleotide reductases (RNRs) were identified in members of the genus . One gene, , encoded an oligomeric protein comprising four identical subunits each with a molecular mass of ∼108 kDa. The activity of this protein depended on the presence of 5′-deoxyadenosylcobalamine (coenzyme B), establishing it as a class II RNR. The gene was cloned, using internal peptide sequences from the purified protein, and was found to encode a polypeptide of 961 aa. Molecular phylogenetic analysis showed that the class II RNR shares significant similarity with most other bacterial and archaeal class II RNRs. Two other genes, and , were initially identified in the genome database in unannotated ORFs as encoding a class Ia RNR. Southern analysis demonstrated that the genes were present in different spp. The genes were cloned and expressed in , and the recombinant proteins were shown to represent a class I RNR. It was shown, using quantitative real-time PCR, that the class Ia and class II RNR genes were differentially transcribed during vegetative growth. The copy number of the class II transcripts was approximately constant throughout the exponential phase of vegetative growth (3–5×10 copies per 400 ng total RNA after reverse transcription). In contrast, the copy number of the class Ia transcripts was some 10- to 20-fold less than that of in the early-exponential growth phase (28×10 copies), and decreased markedly at the mid-exponential (4×10 copies) and late-exponential phases (11×10 copies) of growth. A possible role for the involvement of two RNRs during vegetative growth is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-2-391
2002-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/2/1480391a.html?itemId=/content/journal/micro/10.1099/00221287-148-2-391&mimeType=html&fmt=ahah

References

  1. Aharonowitz Y., Av-Gay Y., Schreiber R., Cohen G. 1993; Characterization of a broad-range disulfide reductase from Streptomyces clavuligerus and its possible role in β-lactam antibiotic biosynthesis. J Bacteriol 175:623–629
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Bibb M. J., Findlay P. R., Johnson M. W. 1984; The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene 30:157–166 [CrossRef]
    [Google Scholar]
  4. Blakley R. 1978; Ribonucleoside triphosphate reductase from Lactobacillus leichmannii . Methods Enzymol 51:246–259
    [Google Scholar]
  5. Booker S., Stubbe J. 1993; Cloning, sequencing, and expression of the adenosylcobalamin-dependent ribonucleotide reductase from Lactobacillus leichmannii . Proc Natl Acad Sci USA 90:8352–8356 [CrossRef]
    [Google Scholar]
  6. Booker S., Licht S., Broderick J., Stubbe J. 1994; Coenzyme B12-dependent ribonucleotide reductase: evidence for the participation of five cysteine residues in ribonucleotide reduction. Biochemistry 33:12676–12685 [CrossRef]
    [Google Scholar]
  7. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  8. Chater K. F. 1993; Genetics of differentiation in Streptomyces . Annu Rev Microbiol 47:685–713 [CrossRef]
    [Google Scholar]
  9. Cole S. T., Brosch R., Parkhill J. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  10. Eliasson R., Pontis E., Jordan A., Reichard P. 1999; Allosteric control of three B12-dependent (class II) ribonucleotide reductases. Implications for the evolution of ribonucleotide reduction. J Biol Chem 274:7182–7189 [CrossRef]
    [Google Scholar]
  11. Faguy D. M., Doolittle W. F. 2000; Horizontal transfer of catalase-peroxidase genes between archaea and pathogenic bacteria. Trends Genet 16:196–197 [CrossRef]
    [Google Scholar]
  12. Fieschi F., Torrents E., Toulokhonova L., Jordan A., Hellman U., Barbe J., Gilbert I., Karlsson M., Sjöberg B.-M. 1998; The manganese-containing ribonucleotide reductase of Corynebacterium ammoniagenes is a class Ib enzyme. J Biol Chem 273:4329–4337 [CrossRef]
    [Google Scholar]
  13. Ford M. E., Sarkis G. J., Belanger A. E., Hendrix R. W., Hatfull G. F. 1998; Genome structure of mycobacteriophage D29: implications for phage evolution. J Mol Biol 279:143–164 [CrossRef]
    [Google Scholar]
  14. Gleason F. K., Holmgren A. 1981; Isolation and characterization of thioredoxin from the cyanobacterium, Anabaena sp. J Biol Chem 256:8306–8309
    [Google Scholar]
  15. Hatfull G. F., Sarkis G. J. 1993; DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol Microbiol 7:395–405 [CrossRef]
    [Google Scholar]
  16. Hendricks S. P., Mathews C. K. 1998; Regulation of T4 phage aerobic ribonucleotide reductase. Simultaneous assay of the four activities. J Biol Chem 272:2861–2865
    [Google Scholar]
  17. Higgins D. G., Thompson J. D., Gibson T. J. 1996; Using clustal for multiple sequence alignments. Methods Enzymol 266:383–402
    [Google Scholar]
  18. Holmgren A. 1989; Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966
    [Google Scholar]
  19. Hopwood D. A. 1988; The Leeuwenhoek lecture; 1987; Towards an understanding of gene switching in Streptomyces , the basis of sporulation and antibiotic production. Proc R Soc Lond B Biol Sci 235:121–138 [CrossRef]
    [Google Scholar]
  20. Hopwood D. A., Bibb M. J., Chater K. F. 7 other authors 1985 Genetic Manipulation of Streptomyces. A Laboratory Manual Norwich, UK: John Innes Foundation;
    [Google Scholar]
  21. Horinouchi S., Beppu T. 1990; Autoregulatory factors of secondary metabolism and morphogenesis in actinomycetes. Crit Rev Biotechnol 10:191–204 [CrossRef]
    [Google Scholar]
  22. Iordan E. P., Petukhova N. I. 1995; Presence of oxygen-consuming ribonucleotide reductase in corrinoid-deficient Propionibacterium freudenreichii . Arch Microbiol 164:377–381 [CrossRef]
    [Google Scholar]
  23. Jordan A., Reichard P. 1998; Ribonucleotide reductases. Annu Rev Biochem 67:71–98 [CrossRef]
    [Google Scholar]
  24. Jordan A., Pontis E., Hellman U., Gibert I., Reichard P., Åslund F. 1996; The ribonucleotide reductase system of Lactococcus lactis . Characterization of an NrdEF enzyme and a new electron transport protein. J Biol Chem 271:8779–8785 [CrossRef]
    [Google Scholar]
  25. Jordan A., Torrents E., Jeanthon C., Eliasson R., Hellman U., Wernstedt C., Barbe J., Gibert I., Reichard P. 1997; B12-dependent ribonucleotide reductases from deeply rooted eubacteria are structurally related to the aerobic enzyme from Escherichia coli . Proc Natl Acad Sci USA 94:13487–13492 [CrossRef]
    [Google Scholar]
  26. Jordan A., Torrents E., Sala I., Hellman U., Gibert I., Reichard P. 1999; Ribonucleotide reduction in Pseudomonas species: simultaneous presence of active enzymes from different classes. J Bacteriol 181:3974–3980
    [Google Scholar]
  27. Kawarabayasi Y., Sawada M., Horikawa H. 22 other authors 1998; Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res 5:55–76 [CrossRef]
    [Google Scholar]
  28. Kawarabayasi Y., Hino Y., Horikawa H. 27 other authors 1999; Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res 6:83–101 [CrossRef]
    [Google Scholar]
  29. Klenk H. P., Clayton R. A., Tomb J. 48 other authors 1997; The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus . Nature 390:364–370 [CrossRef]
    [Google Scholar]
  30. Kollarova M., Halicky P., Bukovska G., Zelinka J. 1983; Properties of ribonucleotide reductase from Streptomyces aureofaciens . Biologia (Bratisl) 38:1189–1195
    [Google Scholar]
  31. Kreisberg-Zakarin R. 1999 Adenosylcobalamin-dependent ribonucleotide reductase from Streptomyces PhD thesis Tel Aviv University;
    [Google Scholar]
  32. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685
    [Google Scholar]
  33. McFarlan S. C., Hogenkamp H. P., Eccleston E. D., Howard J. B., Fuchs J. A. 1989; Purification, characterization and revised amino acid sequence of a second thioredoxin from Corynebacterium nephridii . Eur J Biochem 179:389–398 [CrossRef]
    [Google Scholar]
  34. Newton G. L., Fahey R. C., Cohen G., Aharonowitz Y. 1993; Low-molecular-weight thiols in streptomycetes and their potential role as antioxidants. J Bacteriol 175:2734–2742
    [Google Scholar]
  35. Newton G. L., Bewley C. A., Dwyer T. J., Horn R., Aharonowitz Y., Cohen G., Davies J., Faulkner D. J., Fahey R. C. 1995; The structure of U17 isolated from Streptomyces clavuligerus and its properties as an antioxidant thiol. Eur J Biochem 230:821–825 [CrossRef]
    [Google Scholar]
  36. Newton G. L., Arnold K., Price M. S. 7 other authors 1996; Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol 178:1990–1995
    [Google Scholar]
  37. Ng W. V., Kennedy S. P., Mahairas G. G. 40 other authors 2000; Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci USA 97:12176–12181 [CrossRef]
    [Google Scholar]
  38. Page R. D. M. 1996; treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  39. Paget M. S. B., Kang J. G., Roe J. H., Buttner M. J. 1998; σR, An RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2. EMBO J 17:5776–5782 [CrossRef]
    [Google Scholar]
  40. Panagou D., Orr M. D., Dunstone J. R., Blakley R. L. 1972; A monomeric, allosteric enzyme with a single polypeptide chain. Ribonucleotide reductase of Lactobacillus leichmannii . Biochemistry 11:2378–2388 [CrossRef]
    [Google Scholar]
  41. Pearson W. R. 1990; Rapid and sensitive sequence comparison with fastp and fasta. Methods Enzymol 183:63–98
    [Google Scholar]
  42. Pryanishnikova N. I., Iordan E. P. 1998; Vitamin B12-dependent synthesis of DNA in streptomycetes. Mikrobiologiia 67:19–22
    [Google Scholar]
  43. Racay P., Kollarova M. 1996; Purification and partial characterization of Ca2+-dependent ribonucleotide reductase from Streptomyces aureofaciens . Biochem Mol Biol Int 38:493–500
    [Google Scholar]
  44. Reichard P. 1993; From RNA to DNA, why so many ribonucleotide reductases?. Science 260:1773–1777 [CrossRef]
    [Google Scholar]
  45. Riera J., Robb F. T., Weiss R., Fontecave M. 1997; Ribonucleotide reductase in the archaeon Pyrococcus furiosus : a critical enzyme in the evolution of DNA genomes?. Proc Natl Acad Sci USA 94:475–478 [CrossRef]
    [Google Scholar]
  46. Ruepp A., Graml W., Santos-Martinez M. L. 7 other authors 2000; The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum . Nature 407:508–513 [CrossRef]
    [Google Scholar]
  47. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  48. Smith D. R., Doucette-Stamm L. A., Deloughery C. 34 other authors 1997; Complete genome sequence of Methanobacterium thermoautotrophicum : functional analysis and comparative genomics. J Bacteriol 179:7135–7155
    [Google Scholar]
  49. Stover C. K., Pham X. Q., Erwin A. L. 23 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964 [CrossRef]
    [Google Scholar]
  50. Strohl W. R. 1992; Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20:961–974 [CrossRef]
    [Google Scholar]
  51. Swofford D. L. 2000 paup*: phylogenetic analysis using parsimony (and other methods), version 4.0 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  52. Tauer A., Benner S. A. 1997; The B12-dependent ribonucleotide reductase from the archaebacterium Thermoplasma acidophila : an evolutionary solution to the ribonucleotide reductase conundrum. Proc Natl Acad Sci USA 94:53–58 [CrossRef]
    [Google Scholar]
  53. Torrents E., Jordan A., Karlsson M., Gibert I. 2000; Occurrence of multiple ribonucleotide reductase classes in gamma-proteobacteria species. Curr Microbiol 41:346–351 [CrossRef]
    [Google Scholar]
  54. Tsai P. K., Hogenkamp H. P. 1980; The purification and characterization of an adenosylcobalamin-dependent ribonucleoside diphosphate reductase from Corynebacterium nephridii . J Biol Chem 255:1273–1278
    [Google Scholar]
  55. White O., Eisen J. A., Heidelberg J. F. 30 other authors 1999; Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286:1571–1577 [CrossRef]
    [Google Scholar]
  56. Yang F., Lu G., Rubin H. 1994; Isolation of ribonucleotide reductase from Mycobacterium tuberculosis and cloning, expression, and purification of the large subunit. J Bacteriol 176:6738–6743
    [Google Scholar]
  57. Yang F., Curran S. C., Li L. S., Avarbock D., Graf J. D., Chua M. M., Lu G., Salem J., Rubin H. 1997; Characterization of two genes encoding the Mycobacterium tuberculosis ribonucleotide reductase small subunit. J Bacteriol 179:6408–6415
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-2-391
Loading
/content/journal/micro/10.1099/00221287-148-2-391
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error