1887

Abstract

Tü57 is the principal producer of avilamycin A. , a putative methyltransferase gene, was detected in the avilamycin biosynthetic gene cluster. To determine the function of , a targeted gene inactivation experiment was performed. The resulting chromosomal mutant, carrying an in-frame deletion in , was deficient in avilamycin production. was used to complement an mutant of the erythromycin A producer [Gaisser, S., Bohm, G. A., Doumith, M., Raynal, M. C., Dhillon, N., Cortes, J. & Leadlay, P. F. (1998) . 258, 78–88]. The presence of erythromycin A in the culture supernatant of the complemented mutant indicated that L-mycarose biosynthesis could be restored and that AviG1 could take over the function of the C-methyltransferase EryBIII.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-2-373
2002-02-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/2/1480373a.html?itemId=/content/journal/micro/10.1099/00221287-148-2-373&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped b last and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402.[CrossRef]
    [Google Scholar]
  2. Bate, N., Butler, A. R., Smith, I. P. & Cundliffe, E. ( 2000; ). The mycarose-biosynthetic genes of Streptomyces fradiae, producer of tylosin. Microbiology 146, 139-146.
    [Google Scholar]
  3. Bechthold, A. & Floss, H. ( 1994; ). Overexpression of the thiostrepton resistance genes from Streptomyces azureus in Escherichia coli and characterization of recognition sites of the 23S rRNA A1067 2′-methyltransferase in the GTPase centre of 23S ribosomal RNA. Eur J Biochem 224, 431-437.[CrossRef]
    [Google Scholar]
  4. Biermann, M., Logan, R., O’Brien, K., Seno, E. T., Nagaraja, R. & Schoner, B. E. ( 1992; ). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 166, 3-49.
    [Google Scholar]
  5. Braun, C. (1995). Untersuchungen an einem Antibiotikum aus der Orthosomycingruppe. Diploma thesis, Universität Tübingen, Germany.
  6. Buzzetti, F., Eisenberg, F., Grant, H. N., Keller-Schierlein, W., Voser, W. & Zähner, H. ( 1968; ). Avilamycin. Experimentia 24, 320-324.[CrossRef]
    [Google Scholar]
  7. Chen, H., Thomas, M. G., Hubbard, B. K., Losey, H. C., Walsh, C. T. & Burkart, M. D. ( 2000; ). Deoxysugars in glycopeptide antibiotics: enzymatic synthesis of TDP-l-epivancosamine in chloroeremomycin biosynthesis. Proc Natl Acad Sci USA 97, 11942-11947.[CrossRef]
    [Google Scholar]
  8. Flett, F., Mersinias, V. & Smith, C. P. ( 1997; ). High efficiency intergenic conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155, 223-229.[CrossRef]
    [Google Scholar]
  9. Foster, D. R. & Rybak, M. J. ( 1999; ). Pharmacologic and bacteriologic properties of SCH27899 (Ziracin), an investigational antibiotic from the everninomicin family. Pharmacotherapy 19, 1111-1117.[CrossRef]
    [Google Scholar]
  10. Fuchs, P. C., Barry, A. L. & Brown, S. D. ( 1999; ). In vitro activities of SCH27899 alone and in combination with 17 other antimicrobial agents. Antimicrob Agents Chemother 43, 2996-2997.
    [Google Scholar]
  11. Gaisser, S., Trefzer, A., Stockert, S., Kirschning, A. & Bechthold, A. ( 1997; ). Cloning of an avilamycin biosynthetic gene cluster from Streptomyces viridochromogenes Tü57. J Bacteriol 179, 6271-6278.
    [Google Scholar]
  12. Gaisser, S., Bohm, G. A., Doumith, M., Raynal, M. C., Dhillon, N., Cortes, J. & Leadlay, P. F. ( 1998; ). Analysis of eryBI, eryBIII and eryBVII from the erythromycin biosynthetic gene cluster in Saccharopolyspora erythraea. Mol Gen Genet 258, 78-88.[CrossRef]
    [Google Scholar]
  13. Gaisser, S., Reather, J., Wirtz, G., Kellenberger, L., Staunton, J. & Leadlay, P. F. ( 2000; ). A defined system for hybrid macrolide biosynthesis in Saccharopolyspora erythraea. Mol Microbiol 36, 391-401.[CrossRef]
    [Google Scholar]
  14. Haydock, S. F., Dowson, J. A., Dhillon, N., Roberts, G. A., Cortes, J. & Leadlay, P. F. ( 1991; ). Cloning and sequence analysis of genes involved in erythromycin biosynthesis in Saccharopolyspora erythraea: sequence similarities between EryG and a family of S-adenosylmethionine-dependent methyltransferases. Mol Gen Genet 230, 120-128.[CrossRef]
    [Google Scholar]
  15. Hessler, P. E., Larsen, P. E., Constantinou, A. I., Schram, K. H. & Weber, J. M. ( 1997; ). Isolation of isoflavones from soy-based fermentations of the erythromycin-producing bacterium Saccharopolyspora erythraea. Appl Microbiol Biotechnol 47, 398-404.[CrossRef]
    [Google Scholar]
  16. Hoffmeister, D., Ichinose, K. & Bechthold, A. ( 2001; ). Two sequence elements of glycosyltransferases involved in urdamycin biosynthesis are responsible for substrate specificity and enzymatic activity. Chem Biol 8, 557-567.[CrossRef]
    [Google Scholar]
  17. Hopwood, D. A., Bibb, M. J., Chater, K. F. & 7 other authors (1985). Genetic Manipulation of Streptomyces: a Laboratory Manual. Norwich: John Innes Foundation.
  18. Jones, R. N., Marshall, S. A. & Erwin, M. E. ( 1999; ). Antimicrobial activity and spectrum of SCH27899 (Ziracin) tested against gram-positive species including recommendations for routine susceptibility testing methods and quality control. Quality Control Study Group. Diagn Microbiol Infect Dis 34, 103-110.[CrossRef]
    [Google Scholar]
  19. Kagan, R. M. & Clarke, S. ( 1994; ). Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch Biochem Biophys 310, 417-427.[CrossRef]
    [Google Scholar]
  20. Lambalot, R. H., Cane, D. E., Aparicio, J. J. & Katz, L. ( 1995; ). Overproduction and characterization of the erythromycin C-12 hydroxylase, EryK. Biochemistry 34, 1858-1866.[CrossRef]
    [Google Scholar]
  21. Lin, C., Gupta, S., Loebenberg, D. & Cayen, M. N. ( 2000; ). Pharmacokinetics of an everninomicin (SCH 27899) in mice, rats, rabbits, and cynomolgus monkeys following intravenous administration. Antimicrob Agents Chemother 44, 916-919.[CrossRef]
    [Google Scholar]
  22. Paulus, T. J., Tuan, J. S., Luebke, V. E., Maine, G. T., DeWitt, J. P. & Katz, L. ( 1990; ). Mutation and cloning of eryG, the structural gene for erythromycin O-methyltransferase from Saccharopolyspora erythraea, and expression of eryG in Escherichia coli. J Bacteriol 172, 2541-2546.
    [Google Scholar]
  23. Pelzer, S., Reichert, W., Huppert, M., Heckmann, D. & Wohlleben, W. ( 1997; ). Cloning and analysis of a peptide synthetase gene of the balhimycin producer Amycolatopsis mediterranei DSM5908 and development of a gene disruption/replacement system. J Biotechnol 56, 115-128.[CrossRef]
    [Google Scholar]
  24. Rowe, C. J., Cortes, J., Gaisser, S., Staunton, J. & Leadlay, P. F. ( 1998; ). Construction of new vectors for high-level expression in actinomycetes. Gene 216, 215-223.[CrossRef]
    [Google Scholar]
  25. Salah-Bey, K., Doumith, M., Michel, J. M., Haydock, S., Cortes, J., Leadlay, P. F. & Raynal, M. C. ( 1998; ). Targeted gene inactivation for the elucidation of deoxysugar biosynthesis in the erythromycin producer Saccharopolyspora erythraea. Mol Gen Genet 257, 542-553.[CrossRef]
    [Google Scholar]
  26. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Schluckebier, G., O’Gara, M., Saenger, W. & Cheng, X. ( 1995; ). Universal catalytic domain structure of AdoMet-dependent methyltransferases. J Mol Biol 247, 16-20.[CrossRef]
    [Google Scholar]
  28. Stassi, D., Donadio, S., Staver, M. J. & Katz, L. ( 1993; ). Identification of a Saccharopolyspora erythraea gene required for the final hydroxylation step in erythromycin biosynthesis. J Bacteriol 175, 182-189.
    [Google Scholar]
  29. Summers, R. G., Donadio, S., Staver, M. J., Wendt-Pienkowski, E., Hutchinson, C. R. & Katz, L. ( 1997; ). Sequencing and mutagenesis of genes from the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea that are involved in l-mycarose and d-desosamine production. Microbiology 143, 3251-3262.[CrossRef]
    [Google Scholar]
  30. Trefzer, A., Hoffmeister, D., Kunzel, E. & 8 other authors ( 2000; ). Function of glycosyltransferase genes involved in urdamycin A biosynthesis. Chem Biol 7, 133–142.[CrossRef]
    [Google Scholar]
  31. Wang, E., Simard, M., Bergeron, Y., Beauchamp, D. & Bergeron, M. G. ( 2000; ). In vivo activity and pharmacokinetics of ziracin (SCH27899), a new long-acting everninomicin antibiotic, in a murine model of penicillin-susceptible or penicillin-resistant pneumococcal pneumonia. Antimicrob Agents Chemother 44, 1010-1018.[CrossRef]
    [Google Scholar]
  32. Weber, J. M., Leung, J. O., Swanson, S. J., Idler, K. B. & McAlpine, J. B. ( 1991; ). An erythromycin derivative produced by targeted gene disruption in Saccharopolyspora erythraea. Science 252, 114-117.[CrossRef]
    [Google Scholar]
  33. Weitnauer, G., M hlenweg, A., Trefzer, A. & 7 other authors ( 2001; ). Biosynthesis of the orthosomycin antibiotic avilamycin A: deductions from the molecular analysis of the avi biosynthetic gene cluster of Streptomyces viridochromogenes Tü57 and production of new antibiotics. Chem Biol 8, 569–581.[CrossRef]
    [Google Scholar]
  34. Wright, D. E. ( 1979; ). The orthosomycins, a new family of antibiotics. Tetrahedron 35, 1207-1237.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-2-373
Loading
/content/journal/micro/10.1099/00221287-148-2-373
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error