1887

Abstract

In this study, cDNA and genomic clones encoding a homologue of the yeast gene anti-oxidant 1 () from the white-rot fungus , a basidiomycete known to produce several laccase isoenzymes involved in lignin degradation, were identified. This gene, named homologue (), encodes a protein of 79 kDa with 56% identity to the yeast Atx1p sequence. Two different alleles of were obtained that differed mainly in their intervening sequences and in a 425 nt insertion located 183 nt upstream of the transcription start site. is present as one copy per haploid nucleus in , as shown by Southern analysis. Expression of cDNA restored high-affinity iron uptake in a Δ yeast strain and oxygen sensitivity in a Δ Δ yeast strain, showing that is also a functional homologue of . The inability of to rescue the Δ phenotype on copper-deficient medium indicated that function is copper-dependent. Sequence analysis of the promoter revealed several motifs that were similar to the conserved motifs found in the copper-regulated metallothionein and Cu, Zn superoxide dismutase genes, and , of , and . In contrast to its yeast homologue , is induced under elevated copper concentrations in the medium (>025 μM CuSO) and repressed under copper starvation. The transcription of was analysed in response to copper and iron, and after adding xenobiotica. The results are discussed in relevance to laccase expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-12-4049
2002-12-01
2020-09-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/12/1484049a.html?itemId=/content/journal/micro/10.1099/00221287-148-12-4049&mimeType=html&fmt=ahah

References

  1. Ballance D. J. 1986; Sequences important for gene expression in filamentous fungi. Yeast2:229–236[CrossRef]
    [Google Scholar]
  2. Beaudoin J., Labbé S. 2001; The fission yeast copper-sensing transcription factor Cuf1 regulates the copper transporter gene expression through an Ace1/Amt1-like recognition sequence. J Biol Chem276:15472–15480[CrossRef]
    [Google Scholar]
  3. Call H. P., Mücke I. 1997; History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process. J Biotechnol53:163–202[CrossRef]
    [Google Scholar]
  4. Church G. M., Gilbert W. 1984; Genomic sequencing. Proc Natl Acad Sci USA81:1991–1995[CrossRef]
    [Google Scholar]
  5. Culotta V. C., Joh H. D., Lin S. J., Slekar K. H., Strain J. A. 1995; Physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering. J Biol Chem270:29991–29997[CrossRef]
    [Google Scholar]
  6. Eckert D. J., Emery T. 1983; Iron uptake from ferrichrome A and iron citrate in Ustilago sphaerogena . J Bacteriol155:616–622
    [Google Scholar]
  7. Felby C., Pedersen L. S., Nielsen B. R. 1997; Enhanced auto adhesion of wood fibers using phenol oxidases. Holzforschung51:281–286[CrossRef]
    [Google Scholar]
  8. Feldmann H., Driller L., Meier B., Mages G., Kellermann J., Winnacker E. L. 1996; HDF2 , the second subunit of the Ku homologue from Saccharomyces cerevisiae . J Biol Chem271:27765–27769[CrossRef]
    [Google Scholar]
  9. Gietz R. D., Schiestl R. H. 1995; Transforming yeast with DNA. Methods Mol Cell Biol5:255–269
    [Google Scholar]
  10. Gralla E. B, Thiele D. J, Silar P., Valentine J. S. 1991; ACE1 , a copper-dependent transcription factor, activates expression of the yeast copper, zinc superoxide dismutase gene. Proc Natl Acad Sci USA88:8558–8562[CrossRef]
    [Google Scholar]
  11. Halliwell B., Gutteridge J. M. C. 1984; Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J219:1–14
    [Google Scholar]
  12. Himelblau E., Mira H., Lin S. J., Culotta V. C., Penarrubia L., Amasino R. M. 1998; Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis . Plant Physiol117:1227–1234[CrossRef]
    [Google Scholar]
  13. Hirayama T., Kieber J. J., Hirayama N.. 7 other authors 1999; RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis . Cell97:383–393[CrossRef]
    [Google Scholar]
  14. Hung I. H., Suzuki M., Yamaguchi Y., Yuan D. S., Klausner R. D., Gitlin J. D. 1997; Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae . J Biol Chem272:21461–21466[CrossRef]
    [Google Scholar]
  15. Klomp L. W., Lin S. J., Yuan D. S., Klausner R. D., Culotta V. C., Gitlin J. D. 1997; Identification and functional expression of HAH1 , a novel human gene involved in copper homeostasis. J Biol Chem272:9221–9226[CrossRef]
    [Google Scholar]
  16. Kozak M. 1984; Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res12:857–872[CrossRef]
    [Google Scholar]
  17. Kozak M. 1986; Point mutations define a sequence flanking the AUG initiation codon that modulates translation by eukaryotic ribosomes. Cell44:283–292[CrossRef]
    [Google Scholar]
  18. Lin S. J., Culotta V. C. 1995; The ATX1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity. Proc Natl Acad Sci USA92:3784–3788[CrossRef]
    [Google Scholar]
  19. Lin S. J., Pufahl R. A., Dancis A., O’Halloran T. V., Culotta V. C. 1997; A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem272:9215–9220[CrossRef]
    [Google Scholar]
  20. Logemann J., Schell J., Willmitzer L. 1987; Improved method for the isolation of RNA from plant tissues. Anal Biochem163:16–20[CrossRef]
    [Google Scholar]
  21. Löw R., Rausch T. 1994; Sensitive, nonradioactive northern blots using alkaline transfer of total RNA and PCR-amplified biotinylated probes. BioTechniques17:1026–1030
    [Google Scholar]
  22. Macreadie I. G., Sewell A. K., Winge D. R. 1994; Metal ion resistance and the role of metallothionein in yeast. In Metal Ions in Fungi. Mycology Series pp279–310 Edited by Winkelmann G., Winge D. R.. New York: Marcel Dekker;
    [Google Scholar]
  23. Martin W. J. 1999; Bacteria-related sequences in a simian cytomegalovirus-derived stealth virus culture. Exp Mol Pathol66:8–14[CrossRef]
    [Google Scholar]
  24. Munger K., German U. A., Lerch K. 1985; Isolation and structural organization of the Neurospora crassa copper metallothionein gene. EMBO J4:2665–2668
    [Google Scholar]
  25. O’Halloran T. V., Culotta V. C. 2000; Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem275:25057–25060[CrossRef]
    [Google Scholar]
  26. Payne A. S., Gitlin J. D. 1998; Functional expression of the Menkes disease protein reveals common biochemical mechanisms among the copper-transporting P-type ATPases. J Biol Chem273:3765–3770[CrossRef]
    [Google Scholar]
  27. Portnoy M. E., Rosenzweig A. C., Rae T., Huffman D. L., O’Halloran T. V., Culotta V. C. 1999; Structure–function analyses of the ATX1 metallochaperone. J Biol Chem274:15041–15045[CrossRef]
    [Google Scholar]
  28. Predki P. F., Sakar B. 1992; Effect of replacement of ‘zinc finger’ zinc on estrogen receptor DNA interactions. J Biol Chem267:5842–5846
    [Google Scholar]
  29. Pufahl R. A., Singer C. P., Peariso K. L., Lin S. J., Schmidt P. J., Fahrni C. J., Culotta V. C., Penner-Hahn J. E., O’Halloran T. V. 1997; Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science278:853–856[CrossRef]
    [Google Scholar]
  30. Rae T. D., Schmidt P. J., Pufahl R. A., Culotta V. C., O’Halloran T. V. 1999; Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science284:805–808[CrossRef]
    [Google Scholar]
  31. Rosenau T., Potthast A., Chen C. L., Gratzl J. S. 1996; A mild, simple and general procedure for the oxidation of benzyl alcohols to benzaldehydes. Synth Commun26:315–320[CrossRef]
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Sariaslani F. S. 1989; Microbial enzymes for oxidation of organic molecules. Crit Rev Biotechnol9:171–257[CrossRef]
    [Google Scholar]
  34. Sikorski R. S., Hieter P. 1989; A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae . Genetics122:19–27
    [Google Scholar]
  35. Tamai K. T., Gralla E. B., Ellerby L. M., Valentine J. S., Thiele D. J. 1993; Yeast and mammalian metallothioneins functionally substitute for yeast copper–zinc superoxide dismutase. Proc Natl Acad Sci USA90:8013–8017[CrossRef]
    [Google Scholar]
  36. Thiele D. J., Hamer D. H. 1986; Tandemly duplicated upstream control sequences mediate copper-induced transcription of the Saccharomyces cerevisiae copper-metallothionein gene. Mol Cell Biol6:1158–1163
    [Google Scholar]
  37. Wahl G. M., Meinkoth J. L., Kimmel A. R. 1987; Northern and Southern blots. Methods Enzymol152:572–581
    [Google Scholar]
  38. Wakabayashi T., Nakamura N., Sambongi Y., Wada Y., Oka T., Futai M. 1998; Identification of the copper chaperone, CUC-1 , in Caenorhabditis elegans : tissue specific co-expression with the copper transporting ATPase, CUA-1 . FEBS Lett440:141–146[CrossRef]
    [Google Scholar]
  39. Weaver R. F., Weissmann C. 1979; Mapping of RNA by a modification of the Berk–Sharp procedure: the 5′ termini of 15 S β-globin mRNA precursor and mature 10 s β-globin mRNA have identical map coordinates. Nucleic Acids Res7:1175–1193[CrossRef]
    [Google Scholar]
  40. Yaver D.S., Golightly E. J. 1996; Cloning and characterization of three laccase genes from the white-rot basidiomycete Trametes villosa : genomic organization of the laccase gene family. Gene181:95–102[CrossRef]
    [Google Scholar]
  41. Yaver D. S, Xu F., Golightly E. J.. 7 other authors 1996; Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa . Appl Environ Microbiol62:834–841
    [Google Scholar]
  42. Zhou P., Szczypka M. S., Sosinowski T., Thiele D. J. 1992; Expression of a yeast metallothionein gene family is activated by a single metalloregulatory transcription factor. Mol Cell Biol12:3766–3775
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-12-4049
Loading
/content/journal/micro/10.1099/00221287-148-12-4049
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error