1887

Abstract

The chromosomal arsenic-resistance () operon of is atypical in that it is divergent, with its and genes transcribed in opposite directions. Furthermore, the amino-acid sequence of the putative ArsR-like regulator of the operon is not conserved in regions that have been shown to be responsible for binding to arsenic. Instead, the ArsR-like protein of is related to a group of unstudied ArsR-like proteins that have been found to be associated with chromosomal like operons identified during genome-sequencing projects. Using , and fusions, it was shown that the ArsR-like protein of is a repressor of the and genes of this organism, and that induction of gene expression took place when either AsIII (arsenite) or AsV (arsenate) were added. Deletion of 19 aa from the C terminus of the 118 aa ArsR protein did not affect the regulation of its activity, but deletion of an additional 28 aa inactivated ArsR. Northern-blot hybridization suggested that on induction of expression, the genes were transcribed in greater quantities than the genes, but that the level of induction was not affected by the form of arsenic added (AsIII or AsV).

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-12-3983
2002-12-01
2020-09-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/12/1483983a.html?itemId=/content/journal/micro/10.1099/00221287-148-12-3983&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  2. Butcher B. G., Deane S. M., Rawlings D. E. 2000; The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli . Appl Environ Microbiol66:1826–1833[CrossRef]
    [Google Scholar]
  3. Cai J., DuBow M. S. 1996; Expression of the Escherichia coli chromosomal ars operon. Can J Microbiol42:662–671[CrossRef]
    [Google Scholar]
  4. Carlin A., Shi W., Dey S., Rosen B. P. 1995; The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol177:981–986
    [Google Scholar]
  5. Casadaban M. J., Martinez-Arias A., Shapira S. K., Chou J. 1983; β-Galactosidase gene fusions for analysing gene expression in Escherichia coli and yeast. Methods Enzymol100:293–308
    [Google Scholar]
  6. Cervantes C., Ji G., Ramı́rez J. L., Silver S. 1994; Resistance to arsenic compounds in microorganisms. FEMS Microbiol Rev15:355–367
    [Google Scholar]
  7. Chang A. C. Y., Cohen S. N. 1978; Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the p15A cryptic miniplasmid. J Bacteriol134:1141–1156
    [Google Scholar]
  8. Cook W. J., Kar S. R., Taylor K. B., Hall L. M. 1998; Crystal structure of the cyanobacterial metallothionein repressor SmtB: a model for metalloregulatory proteins. J Mol Biol275:337–346[CrossRef]
    [Google Scholar]
  9. Liang E., Pretorius I. S. 1992; Synthesis and secretion of an Erwinia chrysanthemi pectate lyase in Saccharomyces cerevisiae regulated by different combinations of bacterial and yeast promoter and signal sequences. Gene121:35–45[CrossRef]
    [Google Scholar]
  10. Miller J. H. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  11. Neyt C., Iriarte M., Thi V. H., Cornelis G. R. 1997; Virulence and arsenic resistance in Yersiniae. J Bacteriol179:612–619
    [Google Scholar]
  12. Powles R. E., Deane S. M., Rawlings D. E. 1995; Molecular genetic analysis of a thioredoxin gene from Thiobacillus ferrooxidans . Microbiology141:2175–2181[CrossRef]
    [Google Scholar]
  13. Rosen B. P. 1999; Families of arsenic transporters. Trends Microbiol7:207–212[CrossRef]
    [Google Scholar]
  14. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  15. Sato T., Kobayashi Y. 1998; The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. J Bacteriol180:1655–1661
    [Google Scholar]
  16. Shi W., Wu J., Rosen B. P. 1994; Identification of a putative metal binding site in a new family of metalloregulatory proteins. J Biol Chem269:19826–19829
    [Google Scholar]
  17. Shi W., Dong J., Scott R. A., Ksenzenko M. Y., Rosen B. P. 1996; The role of arsenic–thiol interactions in metalloregulation of the ars operon. J Biol Chem271:9291–9297[CrossRef]
    [Google Scholar]
  18. Silver S., Phung L. T. 1996; Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol50:753–789[CrossRef]
    [Google Scholar]
  19. Singh V. K., Xiong A., Usgaard T. R., Chakrabarti S., Deora R., Misra T. K., Jayaswal R. K. 1999; ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon znt of Staphylococcus aureus . Mol Microbiol33:200–207[CrossRef]
    [Google Scholar]
  20. Smith A. S. G., Rawlings D. E. 1998; Efficiency of the pTF-Fc2 pas poison-antidote stability system in Escherichia coli is affected by the host strain, and antidote degradation requires the Lon protease. J Bacteriol180:5458–5462
    [Google Scholar]
  21. Tsai K.-J., Hsu C.-M., Rosen B. P. 1997; Efflux mechanisms of resistance to cadmium, arsenic and antimony in prokaryotes and eukaryotes. Zool Stud36:1–16
    [Google Scholar]
  22. Wu J., Rosen B. P. 1993; Metalloregulated expression of the ars operon. J Biol Chem268:52–58
    [Google Scholar]
  23. Xu C., Rosen B. P. 1997; Dimerization is essential for DNA binding and repression by the ArsR metalloregulatory protein of Escherichia coli . J Biol Chem272:15734–15738[CrossRef]
    [Google Scholar]
  24. Xu C., Shi W., Rosen B. P. 1996; The chromosomal arsR gene of Escherichia coli encodes a trans -acting metalloregulatory protein. J Biol Chem271:2427–2432[CrossRef]
    [Google Scholar]
  25. Xu C., Zhou T., Kuroda M., Rosen B. P. 1998; Metalloid resistance mechanisms in prokaryotes. J Biochem123:16–23[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-12-3983
Loading
/content/journal/micro/10.1099/00221287-148-12-3983
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error