1887

Abstract

Hydrogen sulfide is highly toxic to mammalian cells. It has also been postulated that hydrogen sulfide modifies haemoglobin resulting in haemolysis. The enzyme that produces hydrogen sulfide from L-cysteine was purified from . Using the N-terminal amino acid sequence of the purified enzyme, the gene encoding L-cysteine desulfhydrase was cloned; the recombinant protein was then purified to examine its enzymic and biological characteristics. This L-cysteine desulfhydrase had the Michaelis–Menten kinetics =062 mM and =163 μmol min mg. DL-Cystathionine, L-cystine, -(2-aminoethyl)-L-cysteine, 3-chloro-DL-alanine and -methyl-L-cysteine were substrates for the enzyme, whereas D-cysteine, DL-homocysteine, L-methionine, DL-serine, DL-alanine, L-cysteine methyl ester, L-tryptophan, L-tyrosine and L-phenylalanine were not. These findings suggest that this L-cysteine desulfhydrase is a C-S lyase that catalyses the α,β-elimination (αC-N and βC-S) reaction. In addition, it is demonstrated that the hydrogen sulfide produced by this enzyme caused the modification and release of haemoglobin in sheep erythrocytes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-12-3961
2002-12-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/12/1483961a.html?itemId=/content/journal/micro/10.1099/00221287-148-12-3961&mimeType=html&fmt=ahah

References

  1. Alexander, F. W., Sandmeier, E., Mehta, P. K. & Christen, P. ( 1994; ). Evolutionary relationships among pyridoxal-5′-phosphate-dependent enzymes. Regio-specific α, β and γ families. Eur J Biochem 219, 953-960.[CrossRef]
    [Google Scholar]
  2. Beauchamp, R. O.Jr, Bus, J. S., Popp, J. A., Boreiko, C. J. & Andjelkovich, D. A. ( 1984; ). A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 13, 25-97.[CrossRef]
    [Google Scholar]
  3. Belfaiza, J., Parsot, C., Martel, A., de la Tour, C. B., Margarita, D., Cohen, G. N. & Saint-Girons, I. ( 1986; ). Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. Proc Natl Acad Sci USA 83, 867-871.[CrossRef]
    [Google Scholar]
  4. Bentley, R. W., Leigh, J. A. & Collins, M. D. ( 1991; ). Intrageneric structure of Streptococcus based on comparative analysis of small-subunit rRNA sequences. Int J Syst Bacteriol 41, 487-494.[CrossRef]
    [Google Scholar]
  5. Carlsson, J., Larsen, J. T. & Edlund, M. B. ( 1993; ). Peptostreptococcus micros has a uniquely high capacity to form hydrogen sulfide from glutathione. Oral Microbiol Immunol 8, 42-45.[CrossRef]
    [Google Scholar]
  6. Chu, L., Burgum, A., Kolodrubetz, D. & Holt, S. C. ( 1995; ). The 46-kilodalton-hemolysin gene from Treponema denticola encodes a novel hemolysin homologous to aminotransferases. Infect Immun 63, 4448-4455.
    [Google Scholar]
  7. Chu, L., Ebersole, J. L., Kurzban, G. P. & Holt, S. C. ( 1997; ). Cystalysin, a 46-kilodalton cysteine desulfhydrase from Treponema denticola, with hemolytic and hemoxidative activities. Infect Immun 65, 3231-3238.
    [Google Scholar]
  8. Claesson, R., Edlund, M. B., Persson, S. & Carlsson, J. ( 1990; ). Production of volatile sulfur compounds by various Fusobacterium species. Oral Microbiol Immunol 5, 137-142.[CrossRef]
    [Google Scholar]
  9. Fernández, M., van Doesburg, W., Rutten, G. A., Marugg, J. D., Alting, A. C., van Kranenburg, R. & Kuipers, O. P. ( 2000; ). Molecular and functional analyses of the metC gene of Lactococcus lactis, encoding cystathionine β-lyase. Appl Environ Microbiol 66, 42-48.[CrossRef]
    [Google Scholar]
  10. Fisher, L. E. & Russell, R. R. ( 1993; ). The isolation and characterization of milleri group streptococci from dental periapical abscesses. J Dent Res 72, 1191-1193.[CrossRef]
    [Google Scholar]
  11. Guarneros, G. & Ortega, M. V. ( 1970; ). Cysteine desulfhydrase activities of Salmonella typhimurium and Escherichia coli. Biochim Biophys Acta 198, 132-142.[CrossRef]
    [Google Scholar]
  12. Hoskins, J., Alborn, W. E., Jr, Arnold, J. & 39 other authors ( 2001; ). Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol 183, 5709–5717.[CrossRef]
    [Google Scholar]
  13. Kawamura, Y., Hou, X. G., Sultana, F., Miura, H. & Ezaki, T. ( 1995; ). Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. Int J Syst Bacteriol 45, 406-408.[CrossRef]
    [Google Scholar]
  14. Kurzban, G. P., Chu, L., Ebersole, J. L. & Holt, S. C. ( 1999; ). Sulfhemoglobin formation in human erythrocytes by cystalysin, an l-cysteine desulfhydrase from Treponema denticola. Oral Microbiol Immunol 14, 153-164.[CrossRef]
    [Google Scholar]
  15. Lipman, D. J. & Pearson, W. R. ( 1985; ). Rapid and sensitive protein similarity searches. Science 227, 1435-1441.[CrossRef]
    [Google Scholar]
  16. Mehta, P. K. & Christen, P. ( 1993; ). Homology of pyridoxal-5′-phosphate-dependent aminotransferases with the cobC (cobalamin synthesis), nifS (nitrogen fixation), pabC (p-aminobenzoate synthesis) and malY (abolishing endogenous induction of the maltose system) gene products. Eur J Biochem 211, 373-376.[CrossRef]
    [Google Scholar]
  17. Mehta, P. K., Hale, T. I. & Christen, P. ( 1989; ). Evolutionary relationships among aminotransferases. Tyrosine aminotransferase, histidinol-phosphate aminotransferase, and aspartate aminotransferase are homologous proteins. Eur J Biochem 186, 249-253.[CrossRef]
    [Google Scholar]
  18. Mejare, B. & Edwardsson, S. ( 1975; ). Streptococcus milleri (Guthof); an indigenous organism of the human oral cavity. Arch Oral Biol 20, 757-762.[CrossRef]
    [Google Scholar]
  19. Moxness, M. S., Brunauer, L. S. & Huestis, W. H. ( 1996; ). Hemoglobin oxidation products extract phospholipids from the membrane of human erythrocytes. Biochemistry 35, 7181-7187.[CrossRef]
    [Google Scholar]
  20. Oho, T., Yoshida, Y., Shimazaki, Y., Yamashita, Y. & Koga, T. ( 2001; ). Characteristics of patients complaining of halitosis and the usefulness of gas chromatography for diagnosing halitosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 91, 531-534.[CrossRef]
    [Google Scholar]
  21. Perry, D., Wondrack, L. M. & Kuramitsu, H. K. ( 1983; ). Genetic transformation of putative cariogenic properties in Streptococcus mutans. Infect Immun 41, 722-727.
    [Google Scholar]
  22. Persson, S., Edlund, M. B., Claesson, R. & Carlsson, J. ( 1990; ). The formation of hydrogen sulfide and methyl mercaptan by oral bacteria. Oral Microbiol Immunol 5, 195-201.[CrossRef]
    [Google Scholar]
  23. Ratcliff, P. A. & Johnson, P. W. ( 1999; ). The relationship between oral malodor, gingivitis, and periodontitis. A review. J Periodontol 70, 485-489.[CrossRef]
    [Google Scholar]
  24. Ruoff, K. L. ( 1988; ). Streptococcus anginosus (‘Streptococcus milleri’): the unrecognized pathogen. Clin Microbiol Rev 1, 102-108.
    [Google Scholar]
  25. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  26. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74, 5463-5467.[CrossRef]
    [Google Scholar]
  27. Shine, J. & Dalgarno, L. ( 1974; ). The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome-binding sites. Proc Natl Acad Sci USA 71, 1342-1346.[CrossRef]
    [Google Scholar]
  28. Soda, K. ( 1968; ). Microdetermination of d-amino acids and d-amino acid oxidase activity with 3,methyl-2-benzothiazolone hydrazone hydrochloride. Anal Biochem 25, 228-235.[CrossRef]
    [Google Scholar]
  29. Tapuhi, Y., Schmidt, D. E., Lindner, W. & Karger, B. L. ( 1981; ). Dansylation of amino acids for high-performance liquid chromatography analysis. Anal Biochem 115, 123-129.[CrossRef]
    [Google Scholar]
  30. Tonzetich, J. ( 1977; ). Production and origin of oral malodor: a review of mechanisms and methods of analysis. J Periodontol 48, 13-20.[CrossRef]
    [Google Scholar]
  31. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76, 4350-4354.[CrossRef]
    [Google Scholar]
  32. Whiley, R. A. & Beighton, D. ( 1991; ). Emended descriptions and recognition of Streptococcus constellatus, Streptococcus intermedius, and Streptococcus anginosus as distinct species. Int J Syst Bacteriol 41, 1-5.[CrossRef]
    [Google Scholar]
  33. Whiley, R. A., Beighton, D., Winstanley, T. G., Fraser, H. Y. & Hardie, J. M. ( 1992; ). Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus (the Streptococcus milleri group): association with different body sites and clinical infections. J Clin Microbiol 30, 243-244.
    [Google Scholar]
  34. Whitworth, J. M. ( 1990; ). Lancefield group F and related streptococci. J Med Microbiol 33, 135-151.
    [Google Scholar]
  35. Yoshimura, M., Nakano, Y., Yamashita, Y., Oho, T., Saito, T. & Koga, T. ( 2000; ). Formation of methyl mercaptan from l-methionine by Porphyromonas gingivalis. Infect Immun 68, 6912-6916.[CrossRef]
    [Google Scholar]
  36. Zdych, E., Peist, R., Reidl, J. & Boos, W. ( 1995; ). MalY of Escherichia coli is an enzyme with the activity of a βC-S lyase (cystathionase). J Bacteriol 177, 5035-5039.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-12-3961
Loading
/content/journal/micro/10.1099/00221287-148-12-3961
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error