1887

Abstract

Hydrogen sulfide is highly toxic to mammalian cells. It has also been postulated that hydrogen sulfide modifies haemoglobin resulting in haemolysis. The enzyme that produces hydrogen sulfide from L-cysteine was purified from . Using the N-terminal amino acid sequence of the purified enzyme, the gene encoding L-cysteine desulfhydrase was cloned; the recombinant protein was then purified to examine its enzymic and biological characteristics. This L-cysteine desulfhydrase had the Michaelis–Menten kinetics =062 mM and =163 μmol min mg. DL-Cystathionine, L-cystine, -(2-aminoethyl)-L-cysteine, 3-chloro-DL-alanine and -methyl-L-cysteine were substrates for the enzyme, whereas D-cysteine, DL-homocysteine, L-methionine, DL-serine, DL-alanine, L-cysteine methyl ester, L-tryptophan, L-tyrosine and L-phenylalanine were not. These findings suggest that this L-cysteine desulfhydrase is a C-S lyase that catalyses the α,β-elimination (αC-N and βC-S) reaction. In addition, it is demonstrated that the hydrogen sulfide produced by this enzyme caused the modification and release of haemoglobin in sheep erythrocytes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-12-3961
2002-12-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/12/1483961a.html?itemId=/content/journal/micro/10.1099/00221287-148-12-3961&mimeType=html&fmt=ahah

References

  1. Alexander F. W., Sandmeier E., Mehta P. K., Christen P. 1994; Evolutionary relationships among pyridoxal-5′-phosphate-dependent enzymes. Regio-specific α, β and γ families. Eur J Biochem 219:953–960 [CrossRef]
    [Google Scholar]
  2. Beauchamp R. O. Jr, Bus J. S., Popp J. A., Boreiko C. J., Andjelkovich D. A. 1984; A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 13:25–97 [CrossRef]
    [Google Scholar]
  3. Belfaiza J., Parsot C., Martel A., de la Tour C. B., Margarita D., Cohen G. N., Saint-Girons I. 1986; Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. Proc Natl Acad Sci USA 83:867–871 [CrossRef]
    [Google Scholar]
  4. Bentley R. W., Leigh J. A., Collins M. D. 1991; Intrageneric structure of Streptococcus based on comparative analysis of small-subunit rRNA sequences. Int J Syst Bacteriol 41:487–494 [CrossRef]
    [Google Scholar]
  5. Carlsson J., Larsen J. T., Edlund M. B. 1993; Peptostreptococcus micros has a uniquely high capacity to form hydrogen sulfide from glutathione. Oral Microbiol Immunol 8:42–45 [CrossRef]
    [Google Scholar]
  6. Chu L., Burgum A., Kolodrubetz D., Holt S. C. 1995; The 46-kilodalton-hemolysin gene from Treponema denticola encodes a novel hemolysin homologous to aminotransferases. Infect Immun 63:4448–4455
    [Google Scholar]
  7. Chu L., Ebersole J. L., Kurzban G. P., Holt S. C. 1997; Cystalysin, a 46-kilodalton cysteine desulfhydrase from Treponema denticola , with hemolytic and hemoxidative activities. Infect Immun 65:3231–3238
    [Google Scholar]
  8. Claesson R., Edlund M. B., Persson S., Carlsson J. 1990; Production of volatile sulfur compounds by various Fusobacterium species. Oral Microbiol Immunol 5:137–142 [CrossRef]
    [Google Scholar]
  9. Fernández M., van Doesburg W., Rutten G. A., Marugg J. D., Alting A. C., van Kranenburg R., Kuipers O. P. 2000; Molecular and functional analyses of the metC gene of Lactococcus lactis , encoding cystathionine β-lyase. Appl Environ Microbiol 66:42–48 [CrossRef]
    [Google Scholar]
  10. Fisher L. E., Russell R. R. 1993; The isolation and characterization of milleri group streptococci from dental periapical abscesses. J Dent Res 72:1191–1193 [CrossRef]
    [Google Scholar]
  11. Guarneros G., Ortega M. V. 1970; Cysteine desulfhydrase activities of Salmonella typhimurium and Escherichia coli . Biochim Biophys Acta 198:132–142 [CrossRef]
    [Google Scholar]
  12. Hoskins J., Alborn W. E. Jr, Arnold J. 39 other authors 2001; Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol 183:5709–5717 [CrossRef]
    [Google Scholar]
  13. Kawamura Y., Hou X. G., Sultana F., Miura H., Ezaki T. 1995; Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus . Int J Syst Bacteriol 45:406–408 [CrossRef]
    [Google Scholar]
  14. Kurzban G. P., Chu L., Ebersole J. L., Holt S. C. 1999; Sulfhemoglobin formation in human erythrocytes by cystalysin, an l-cysteine desulfhydrase from Treponema denticola . Oral Microbiol Immunol 14:153–164 [CrossRef]
    [Google Scholar]
  15. Lipman D. J., Pearson W. R. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441 [CrossRef]
    [Google Scholar]
  16. Mehta P. K., Christen P. 1993; Homology of pyridoxal-5′-phosphate-dependent aminotransferases with the cobC (cobalamin synthesis), nifS (nitrogen fixation), pabC ( p -aminobenzoate synthesis) and malY (abolishing endogenous induction of the maltose system) gene products. Eur J Biochem 211:373–376 [CrossRef]
    [Google Scholar]
  17. Mehta P. K., Hale T. I., Christen P. 1989; Evolutionary relationships among aminotransferases. Tyrosine aminotransferase, histidinol-phosphate aminotransferase, and aspartate aminotransferase are homologous proteins. Eur J Biochem 186:249–253 [CrossRef]
    [Google Scholar]
  18. Mejare B., Edwardsson S. 1975; Streptococcus milleri (Guthof); an indigenous organism of the human oral cavity. Arch Oral Biol 20:757–762 [CrossRef]
    [Google Scholar]
  19. Moxness M. S., Brunauer L. S., Huestis W. H. 1996; Hemoglobin oxidation products extract phospholipids from the membrane of human erythrocytes. Biochemistry 35:7181–7187 [CrossRef]
    [Google Scholar]
  20. Oho T., Yoshida Y., Shimazaki Y., Yamashita Y., Koga T. 2001; Characteristics of patients complaining of halitosis and the usefulness of gas chromatography for diagnosing halitosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 91:531–534 [CrossRef]
    [Google Scholar]
  21. Perry D., Wondrack L. M., Kuramitsu H. K. 1983; Genetic transformation of putative cariogenic properties in Streptococcus mutans . Infect Immun 41:722–727
    [Google Scholar]
  22. Persson S., Edlund M. B., Claesson R., Carlsson J. 1990; The formation of hydrogen sulfide and methyl mercaptan by oral bacteria. Oral Microbiol Immunol 5:195–201 [CrossRef]
    [Google Scholar]
  23. Ratcliff P. A., Johnson P. W. 1999; The relationship between oral malodor, gingivitis, and periodontitis. A review. J Periodontol 70:485–489 [CrossRef]
    [Google Scholar]
  24. Ruoff K. L. 1988; Streptococcus anginosus (‘ Streptococcus milleri ’): the unrecognized pathogen. Clin Microbiol Rev 1:102–108
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  27. Shine J., Dalgarno L. 1974; The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome-binding sites. Proc Natl Acad Sci USA 71:1342–1346 [CrossRef]
    [Google Scholar]
  28. Soda K. 1968; Microdetermination of d-amino acids and d-amino acid oxidase activity with 3,methyl-2-benzothiazolone hydrazone hydrochloride. Anal Biochem 25:228–235 [CrossRef]
    [Google Scholar]
  29. Tapuhi Y., Schmidt D. E., Lindner W., Karger B. L. 1981; Dansylation of amino acids for high-performance liquid chromatography analysis. Anal Biochem 115:123–129 [CrossRef]
    [Google Scholar]
  30. Tonzetich J. 1977; Production and origin of oral malodor: a review of mechanisms and methods of analysis. J Periodontol 48:13–20 [CrossRef]
    [Google Scholar]
  31. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354 [CrossRef]
    [Google Scholar]
  32. Whiley R. A., Beighton D. 1991; Emended descriptions and recognition of Streptococcus constellatus , Streptococcus intermedius , and Streptococcus anginosus as distinct species. Int J Syst Bacteriol 41:1–5 [CrossRef]
    [Google Scholar]
  33. Whiley R. A., Beighton D., Winstanley T. G., Fraser H. Y., Hardie J. M. 1992; Streptococcus intermedius , Streptococcus constellatus , and Streptococcus anginosus (the Streptococcus milleri group): association with different body sites and clinical infections. J Clin Microbiol 30:243–244
    [Google Scholar]
  34. Whitworth J. M. 1990; Lancefield group F and related streptococci. J Med Microbiol 33:135–151
    [Google Scholar]
  35. Yoshimura M., Nakano Y., Yamashita Y., Oho T., Saito T., Koga T. 2000; Formation of methyl mercaptan from l-methionine by Porphyromonas gingivalis . Infect Immun 68:6912–6916 [CrossRef]
    [Google Scholar]
  36. Zdych E., Peist R., Reidl J., Boos W. 1995; MalY of Escherichia coli is an enzyme with the activity of a βC-S lyase (cystathionase. J Bacteriol 177:5035–5039
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-12-3961
Loading
/content/journal/micro/10.1099/00221287-148-12-3961
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error