Skip to content
1887

Abstract

Hydrogen sulfide is highly toxic to mammalian cells. It has also been postulated that hydrogen sulfide modifies haemoglobin resulting in haemolysis. The enzyme that produces hydrogen sulfide from L-cysteine was purified from . Using the N-terminal amino acid sequence of the purified enzyme, the gene encoding L-cysteine desulfhydrase was cloned; the recombinant protein was then purified to examine its enzymic and biological characteristics. This L-cysteine desulfhydrase had the Michaelis–Menten kinetics =062 mM and =163 μmol min mg. DL-Cystathionine, L-cystine, -(2-aminoethyl)-L-cysteine, 3-chloro-DL-alanine and -methyl-L-cysteine were substrates for the enzyme, whereas D-cysteine, DL-homocysteine, L-methionine, DL-serine, DL-alanine, L-cysteine methyl ester, L-tryptophan, L-tyrosine and L-phenylalanine were not. These findings suggest that this L-cysteine desulfhydrase is a C-S lyase that catalyses the α,β-elimination (αC-N and βC-S) reaction. In addition, it is demonstrated that the hydrogen sulfide produced by this enzyme caused the modification and release of haemoglobin in sheep erythrocytes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-12-3961
2002-12-01
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/12/1483961a.html?itemId=/content/journal/micro/10.1099/00221287-148-12-3961&mimeType=html&fmt=ahah

References

  1. Alexander F. W., Sandmeier E., Mehta P. K., Christen P. 1994; Evolutionary relationships among pyridoxal-5′-phosphate-dependent enzymes. Regio-specific α, β and γ families. Eur J Biochem 219:953–960 [CrossRef]
    [Google Scholar]
  2. Beauchamp R. O. Jr, Bus J. S., Popp J. A., Boreiko C. J., Andjelkovich D. A. 1984; A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 13:25–97 [CrossRef]
    [Google Scholar]
  3. Belfaiza J., Parsot C., Martel A., de la Tour C. B., Margarita D., Cohen G. N., Saint-Girons I. 1986; Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. Proc Natl Acad Sci USA 83:867–871 [CrossRef]
    [Google Scholar]
  4. Bentley R. W., Leigh J. A., Collins M. D. 1991; Intrageneric structure of Streptococcus based on comparative analysis of small-subunit rRNA sequences. Int J Syst Bacteriol 41:487–494 [CrossRef]
    [Google Scholar]
  5. Carlsson J., Larsen J. T., Edlund M. B. 1993; Peptostreptococcus micros has a uniquely high capacity to form hydrogen sulfide from glutathione. Oral Microbiol Immunol 8:42–45 [CrossRef]
    [Google Scholar]
  6. Chu L., Burgum A., Kolodrubetz D., Holt S. C. 1995; The 46-kilodalton-hemolysin gene from Treponema denticola encodes a novel hemolysin homologous to aminotransferases. Infect Immun 63:4448–4455
    [Google Scholar]
  7. Chu L., Ebersole J. L., Kurzban G. P., Holt S. C. 1997; Cystalysin, a 46-kilodalton cysteine desulfhydrase from Treponema denticola , with hemolytic and hemoxidative activities. Infect Immun 65:3231–3238
    [Google Scholar]
  8. Claesson R., Edlund M. B., Persson S., Carlsson J. 1990; Production of volatile sulfur compounds by various Fusobacterium species. Oral Microbiol Immunol 5:137–142 [CrossRef]
    [Google Scholar]
  9. Fernández M., van Doesburg W., Rutten G. A., Marugg J. D., Alting A. C., van Kranenburg R., Kuipers O. P. 2000; Molecular and functional analyses of the metC gene of Lactococcus lactis , encoding cystathionine β-lyase. Appl Environ Microbiol 66:42–48 [CrossRef]
    [Google Scholar]
  10. Fisher L. E., Russell R. R. 1993; The isolation and characterization of milleri group streptococci from dental periapical abscesses. J Dent Res 72:1191–1193 [CrossRef]
    [Google Scholar]
  11. Guarneros G., Ortega M. V. 1970; Cysteine desulfhydrase activities of Salmonella typhimurium and Escherichia coli . Biochim Biophys Acta 198:132–142 [CrossRef]
    [Google Scholar]
  12. Hoskins J., Alborn W. E. Jr, Arnold J. 39 other authors 2001; Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol 183:5709–5717 [CrossRef]
    [Google Scholar]
  13. Kawamura Y., Hou X. G., Sultana F., Miura H., Ezaki T. 1995; Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus . Int J Syst Bacteriol 45:406–408 [CrossRef]
    [Google Scholar]
  14. Kurzban G. P., Chu L., Ebersole J. L., Holt S. C. 1999; Sulfhemoglobin formation in human erythrocytes by cystalysin, an l-cysteine desulfhydrase from Treponema denticola . Oral Microbiol Immunol 14:153–164 [CrossRef]
    [Google Scholar]
  15. Lipman D. J., Pearson W. R. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441 [CrossRef]
    [Google Scholar]
  16. Mehta P. K., Christen P. 1993; Homology of pyridoxal-5′-phosphate-dependent aminotransferases with the cobC (cobalamin synthesis), nifS (nitrogen fixation), pabC ( p -aminobenzoate synthesis) and malY (abolishing endogenous induction of the maltose system) gene products. Eur J Biochem 211:373–376 [CrossRef]
    [Google Scholar]
  17. Mehta P. K., Hale T. I., Christen P. 1989; Evolutionary relationships among aminotransferases. Tyrosine aminotransferase, histidinol-phosphate aminotransferase, and aspartate aminotransferase are homologous proteins. Eur J Biochem 186:249–253 [CrossRef]
    [Google Scholar]
  18. Mejare B., Edwardsson S. 1975; Streptococcus milleri (Guthof); an indigenous organism of the human oral cavity. Arch Oral Biol 20:757–762 [CrossRef]
    [Google Scholar]
  19. Moxness M. S., Brunauer L. S., Huestis W. H. 1996; Hemoglobin oxidation products extract phospholipids from the membrane of human erythrocytes. Biochemistry 35:7181–7187 [CrossRef]
    [Google Scholar]
  20. Oho T., Yoshida Y., Shimazaki Y., Yamashita Y., Koga T. 2001; Characteristics of patients complaining of halitosis and the usefulness of gas chromatography for diagnosing halitosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 91:531–534 [CrossRef]
    [Google Scholar]
  21. Perry D., Wondrack L. M., Kuramitsu H. K. 1983; Genetic transformation of putative cariogenic properties in Streptococcus mutans . Infect Immun 41:722–727
    [Google Scholar]
  22. Persson S., Edlund M. B., Claesson R., Carlsson J. 1990; The formation of hydrogen sulfide and methyl mercaptan by oral bacteria. Oral Microbiol Immunol 5:195–201 [CrossRef]
    [Google Scholar]
  23. Ratcliff P. A., Johnson P. W. 1999; The relationship between oral malodor, gingivitis, and periodontitis. A review. J Periodontol 70:485–489 [CrossRef]
    [Google Scholar]
  24. Ruoff K. L. 1988; Streptococcus anginosus (‘ Streptococcus milleri ’): the unrecognized pathogen. Clin Microbiol Rev 1:102–108
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  27. Shine J., Dalgarno L. 1974; The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome-binding sites. Proc Natl Acad Sci USA 71:1342–1346 [CrossRef]
    [Google Scholar]
  28. Soda K. 1968; Microdetermination of d-amino acids and d-amino acid oxidase activity with 3,methyl-2-benzothiazolone hydrazone hydrochloride. Anal Biochem 25:228–235 [CrossRef]
    [Google Scholar]
  29. Tapuhi Y., Schmidt D. E., Lindner W., Karger B. L. 1981; Dansylation of amino acids for high-performance liquid chromatography analysis. Anal Biochem 115:123–129 [CrossRef]
    [Google Scholar]
  30. Tonzetich J. 1977; Production and origin of oral malodor: a review of mechanisms and methods of analysis. J Periodontol 48:13–20 [CrossRef]
    [Google Scholar]
  31. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354 [CrossRef]
    [Google Scholar]
  32. Whiley R. A., Beighton D. 1991; Emended descriptions and recognition of Streptococcus constellatus , Streptococcus intermedius , and Streptococcus anginosus as distinct species. Int J Syst Bacteriol 41:1–5 [CrossRef]
    [Google Scholar]
  33. Whiley R. A., Beighton D., Winstanley T. G., Fraser H. Y., Hardie J. M. 1992; Streptococcus intermedius , Streptococcus constellatus , and Streptococcus anginosus (the Streptococcus milleri group): association with different body sites and clinical infections. J Clin Microbiol 30:243–244
    [Google Scholar]
  34. Whitworth J. M. 1990; Lancefield group F and related streptococci. J Med Microbiol 33:135–151
    [Google Scholar]
  35. Yoshimura M., Nakano Y., Yamashita Y., Oho T., Saito T., Koga T. 2000; Formation of methyl mercaptan from l-methionine by Porphyromonas gingivalis . Infect Immun 68:6912–6916 [CrossRef]
    [Google Scholar]
  36. Zdych E., Peist R., Reidl J., Boos W. 1995; MalY of Escherichia coli is an enzyme with the activity of a βC-S lyase (cystathionase. J Bacteriol 177:5035–5039
    [Google Scholar]
/content/journal/micro/10.1099/00221287-148-12-3961
Loading
/content/journal/micro/10.1099/00221287-148-12-3961
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error