1887

Abstract

To begin to understand the role of in DNA replication, the gene was characterized at the genetic level. Western analyses revealed that DnaA accounts for approximately 018% of the total cellular protein during both the active and stationary growth periods. Expression of antisense RNA reduced viability, indicating that is an essential gene in replication. To further understand the role(s) of in replication, a conditionally expressing strain was constructed in which expression of was controlled by acetamide. Growth in the presence of 02% acetamide elevated the intracellular levels of DnaA and increased cell length, but did not affect viability. Visualization of DNA by fluorescence microscopy revealed that DnaA-overproducing cells were multinucleoidal, indicating a loss of synchrony between the replication and cell-division cycles. Withdrawal of acetamide resulted in the depletion of the intracellular levels of DnaA, reduced viability and gradually blocked DNA synthesis. Acetamide-starved cells were very filamentous, several times the size of the parent cells and showed either abnormal or multi-nucleoid morphology, indicating a blockage in cell-division events. The addition of acetamide to the starved cells restored their viability and shortened the lengths of their filaments back to the size of the parent cells. Thus, both increasing and decreasing the levels of DnaA have an effect on the cells, indicating that the level of DnaA is critical to the maintenance of coordination between DNA replication and cell division. It is concluded that DNA replication and cell-division processes in are linked, and it is proposed that DnaA has a role in both of these processes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-12-3887
2002-12-01
2020-09-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/12/1483887a.html?itemId=/content/journal/micro/10.1099/00221287-148-12-3887&mimeType=html&fmt=ahah

References

  1. Ali Azam T., Iwata A., Nishhimura A., Ueda S., Ishihama A. 1999; Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol181:6361–6370
    [Google Scholar]
  2. Atlung T., Clausen E., Hansen F. G. 1984; Autorepression of the dnaA gene of Escherichia coli . Adv Exp Med Biol179:199–207
    [Google Scholar]
  3. Atlung T., Clausen E. S., Hansen F. G. 1985; Autoregulation of the dnaA gene of Escherichia coli K12. Mol Gen Genet200:442–450[CrossRef]
    [Google Scholar]
  4. Bramhill D., Kornberg A. 1988a; Duplex opening by DnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome. Cell52:743–755[CrossRef]
    [Google Scholar]
  5. Bramhill D., Kornberg A. 1988b; A model for initiation at origins of DNA replication. Cell54:915–918[CrossRef]
    [Google Scholar]
  6. Braun R. E., Wright A. 1986; DNA methylation differentially enhances the expression of one of the two Escherichia coli dnaA promoters in vivo and in vitro . Mol Gen Genet202:246–250[CrossRef]
    [Google Scholar]
  7. Braun R. E., O’Day K., Wright A. 1985; Autoregulation of the DNA replication gene dnaA in E. coli K-12. Cell40:159–169[CrossRef]
    [Google Scholar]
  8. Cole S. T., Brosch R., Parkhill J.. 40 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544[CrossRef]
    [Google Scholar]
  9. Cook W. R., Rothfield L. I. 1999; Nucleoid-independent identification of cell division sites in Escherichia coli . J Bacteriol181:1900–1905
    [Google Scholar]
  10. Dick T., Lee B. H., Murugasu-Oei B. 1998; Oxygen depletion induced dormancy in Mycobacterium smegmatis . FEMS Microbiol Lett163:159–164[CrossRef]
    [Google Scholar]
  11. Donachie W. D. 1993; The cell cycle of Escherichia coli . Annu Rev Microbiol47:199–230[CrossRef]
    [Google Scholar]
  12. Dziadek J., Madiraju M. V., Rutherford S. A., Atkinson M. A., Rajagopalan M. 2002a; Physiological consequences associated with overproduction of Mycobacterium tuberculosis FtsZ in mycobacterial hosts. Microbiology148:961–971
    [Google Scholar]
  13. Dziadek J., Rajagopalan M., Parish T., Kurepina N., Greendyke R., Kreiswirth B. N., Madiraju M. V. 2002b; Mutations in the CCGTTCACA DnaA box of Mycobacterium tuberculosis oriC that abolish replication of oriC plasmids are tolerated on the chromosome. J Bacteriol184:3848–3855[CrossRef]
    [Google Scholar]
  14. Gille H., Messer W. 1991; Localized DNA melting and structural perturbations in the origin of replication, oriC , of Escherichia coli in vitro and in vivo . EMBO J10:1579–1584
    [Google Scholar]
  15. Gomez J. E., Bishai W. R. 2000; whmD is an essential mycobacterial gene required for proper septation and cell division. Proc Natl Acad Sci USA97:8554–8559[CrossRef]
    [Google Scholar]
  16. Gorbatyuk B., Marczynski G. T. 2001; Physiological consequences of blocked Caulobacter crescentus dnaA expression, an essential DNA replication gene. Mol Microbiol40:485–497[CrossRef]
    [Google Scholar]
  17. Hansen F. G., Atlung T., Braun R. E., Wright A., Hughes P., Kohiyama M. 1991; Initiator (DnaA) protein concentration as a function of growth rate in Escherichia coli and Salmonella typhimurium . J Bacteriol173:5194–5199
    [Google Scholar]
  18. Hinds J., Mahenthiralingam E., Kempsell K. E., Duncan K., Stokes R. W., Parish T., Stoker N. G. 1999; Enhanced gene replacement in mycobacteria. Microbiology145:519–527[CrossRef]
    [Google Scholar]
  19. Holz A., Schaefer C., Gille H., Jueterbock W. R., Messer W. 1992; Mutations in the DnaA binding sites of the replication origin of Escherichia coli . Mol Gen Genet233:81–88[CrossRef]
    [Google Scholar]
  20. Klann A. G., Belanger A. E., Abanes-De Mello A., Lee J. L., Hatful G. F. 1998; Characterization of the dnaG locus in Mycobacterium smegmatis reveals linkage of DNA replication and cell division. J Bacteriol180:65–72
    [Google Scholar]
  21. Kornberg A., Baker T. 1991; DNA Replication New York: W. H. Freeman;
    [Google Scholar]
  22. Langer U., Richter S., Roth A., Weigel C., Messer W. 1996; A comprehensive set of DnaA-box mutations in the replication origin, oriC , of Escherichia coli . Mol Microbiol21:301–311[CrossRef]
    [Google Scholar]
  23. Lee L.-F., Yeh S.-H., Chen C. W. 2002; Construction and synchronization of dnaA temperature-sensitive mutants of Streptomyces . J Bacteriol184:1214–1218[CrossRef]
    [Google Scholar]
  24. Madiraju M. V., Qin M. H., Yamamoto K., Atkinson M. A., Rajagopalan M. 1999; The dnaA gene region of Mycobacterium avium and the autonomous replication activities of its 5′ and 3′ flanking regions. Microbiology145:2913–2921
    [Google Scholar]
  25. Manabe Y. C., Bishai W. R. 2000; Latent Mycobacterium tuberculosis – persistence, patience, and winning by waiting. Nat Med6:1327–1329[CrossRef]
    [Google Scholar]
  26. Marszalek J., Kaguni J. M. 1994; DnaA protein directs the binding of DnaB protein in initiation of DNA replication in Escherichia coli . J Biol Chem269:4883–4890
    [Google Scholar]
  27. Messer W., Weigel C. 1997; DnaA initiator – also a transcription factor. Mol Microbiol24:1–6[CrossRef]
    [Google Scholar]
  28. Messer W., Seufert W., Schaefer C., Gielow A., Hartmann H., Wende M. 1988; Functions of the DnaA protein of Escherichia coli in replication and transcription. Biochim Biophys Acta951:351–358[CrossRef]
    [Google Scholar]
  29. Messer W., Blaesing F., Jakimowicz D. & 10 other authors. 2001; Bacterial replication initiator DnaA. Rules for DnaA binding and roles of DnaA in origin unwinding and helicase loading. Biochimie83:5–12[CrossRef]
    [Google Scholar]
  30. Moriya S., Kato K., Yoshikawa H., Ogasawara N. 1990; Isolation of a dnaA mutant of Bacillus subtilis defective in initiation of replication: amount of DnaA protein determines cells’ initiation potential. EMBO J9:2905–2910
    [Google Scholar]
  31. Noirot-Gros M. F., Dervyn E., Wu L. J., Mervelet P., Errington J., Ehrlich S. D., Noirot P. 2002; An expanded view of bacterial DNA replication. Proc Natl Acad Sci USA99:8342–8347[CrossRef]
    [Google Scholar]
  32. Ogura Y., Imai Y., Ogasawara N., Moriya S. 2001; Autoregulation of the dnaA–dnaN operon and effects of DnaA protein levels on replication initiation in Bacillus subtilis . J Bacteriol183:3833–3841[CrossRef]
    [Google Scholar]
  33. Parish T., Stoker N. G. 2000; Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology146:1969–1975
    [Google Scholar]
  34. Parish T., Mahenthiralingam E., Draper P., Davis E. O., Colston M. J. 1997; Regulation of the inducible acetamidase gene of Mycobacterium smegmatis . Microbiology143:2267–2276[CrossRef]
    [Google Scholar]
  35. Polaczek P., Wright A. 1990; Regulation of expression of the dnaA gene in Escherichia coli : role of the two promoters and the DnaA box. New Biol2:574–582
    [Google Scholar]
  36. Qin M. H., Madiraju M. V., Zachariah S., Rajagopalan M. 1997; Characterization of the oriC region of Mycobacterium smegmatis . J Bacteriol179:6311–6317
    [Google Scholar]
  37. Qin M. H., Madiraju M. V., Rajagopalan M. 1999; Characterization of the functional replication origin of Mycobacterium tuberculosis . Gene233:121–130[CrossRef]
    [Google Scholar]
  38. Rajagopalan M., Qin M. H., Nash D. R., Madiraju M. V. 1995; Mycobacterium smegmatis dnaA region and autonomous replication activity. J Bacteriol177:6527–6535
    [Google Scholar]
  39. Ratledge C. 1976; The physiology of the mycobacteria. Adv Microb Physiol13:115–244
    [Google Scholar]
  40. Richter S., Hess W. R., Krause M., Messer W. 1998; Unique organization of the dnaA region from Prochlorococcus marinus CCMP1375, a marine cyanobacterium. Mol Gen Genet257:534–541[CrossRef]
    [Google Scholar]
  41. Salazar L., Fsihi H., de Rossi E., Riccardi G., Rios C., Cole S. T., Takiff H. E. 1996; Organization of the origins of replication of the chromosomes of Mycobacterium smegmatis , Mycobacterium leprae and Mycobacterium tuberculosis and isolation of a functional origin from M. smegmatis . Mol Microbiol20:283–293[CrossRef]
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Schaper S., Messer W. 1997; Prediction of the structure of the replication initiator protein DnaA. Proteins28:1–9[CrossRef]
    [Google Scholar]
  44. Skarstad K., Boye E. 1994; The initiator protein DnaA: evolution, properties and function. Biochem Biophys Acta1217:111–130
    [Google Scholar]
  45. Skovgaard O., Olesen K., Wright A. 1998; The central lysine in the P-loop motif of the Escherichia coli DnaA protein is essential for initiating DNA replication from the chromosomal origin, oriC , and the F factor origin, oriS , but is dispensable for initiation from the P1 plasmid origin, oriR . Plasmid40:91–99[CrossRef]
    [Google Scholar]
  46. Smith R. W., McAteer S., Masters M. 1997; Autoregulation of the Escherichia coli replication initiator protein, DnaA, is indirect. Mol Microbiol23:1303–1315[CrossRef]
    [Google Scholar]
  47. Snapper S. B., Lugosi L., Jekkel A., Melton R. E., Kieser T., Bloom B. R., Jacobs W. R. Jr. 1988; Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc Natl Acad Sci USA85:6987–6991[CrossRef]
    [Google Scholar]
  48. Stover C. K., de la Cruz V. F., Fuerst T. R.. 11 other authors 1991; New use of BCG for recombinant vaccines. Nature351:456–460[CrossRef]
    [Google Scholar]
  49. Stover C. K., Bansal G. P., Hanson M. S.. 7 other authors 1993; Protective immunity elicited by recombinant bacille Calmette-Guerin (BCG) expressing outer surface protein A (OspA) lipoprotein: a candidate Lyme disease vaccine. J Exp Med178:197–209[CrossRef]
    [Google Scholar]
  50. Sun Q., Margolin W. 2001; Influence of the nucleoid on placement of FtsZ and MinE rings in Escherichia coli . J Bacteriol183:1413–1422[CrossRef]
    [Google Scholar]
  51. Triccas J. A., Parish T., Britton W. J., Gicquel B. 1998; An inducible expression system permitting the efficient purification of a recombinant antigen from Mycobacterium smegmatis . FEMS Microbiol Lett167:151–156[CrossRef]
    [Google Scholar]
  52. Wayne L. G. 1977; Synchronized replication of Mycobacterium tuberculosis . Infect Immun17:528–530
    [Google Scholar]
  53. Wayne L. G. 1994; Dormancy of Mycobacterium tuberculosis and latency of disease. Eur J Clin Microbiol Infect Dis13:908–914[CrossRef]
    [Google Scholar]
  54. Wayne L. G., Hayes L. G. 1996; An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun64:2062–2069
    [Google Scholar]
  55. Yamamoto K., Muniruzzaman S., Rajagopalan M., Madiraju M. V. 2002; Modulation of Mycobacterium tuberculosis DnaA protein–adenine–nucleotide interactions by acidic phospholipids. Biochem J363:305–311[CrossRef]
    [Google Scholar]
  56. Zyskind J. W., Smith D. W. 1992; DNA replication, the bacterial cell cycle, and cell growth. Cell69:5–8[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-12-3887
Loading
/content/journal/micro/10.1099/00221287-148-12-3887
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error