1887

Abstract

The expression of six of the mammalian cell-entry () genes of the operon of has been described previously. In this study, data are presented for the expression of other mammalian cell-entry homologues (, and ) at the RNA level, as determined by RT-PCR. The stress responses of these genes and of other immunologically important antigens are also characterized with respect to the introduction of oxygen depletion. Analysis of the expression of the genes in relation to oxygen depletion revealed that they were expressed differentially. The RT-PCR results showed that , , (encoding the α-crystallin antigen Acr) and (encoding the early secretory antigenic target-6) were expressed throughout the cultivation period, whereas the expression of and was downregulated in the later stages of cultivation. This study gives new insights into the expression profiles of the different operons and the and genes in an model of dormant-like bacilli. Identification of the genes that are differentially expressed under aerobic conditions and under oxygen-limited conditions contributes to our understanding of the bacilli involved in latent tuberculosis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-12-3881
2002-12-01
2021-10-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/12/1483881a.html?itemId=/content/journal/micro/10.1099/00221287-148-12-3881&mimeType=html&fmt=ahah

References

  1. Ahmad S., Akbar P. K., Wiker H. G., Harboe M., Mustafa A. S. 1999; Cloning, expression and immunological reactivity of two mammalian cell entry proteins encoded by the mce1 operon of Mycobacterium tuberculosis . Scand J Immunol 50:510–518 [CrossRef]
    [Google Scholar]
  2. Andersen P., Askgaard D., Ljungqvist L., Bennedsen J., Heron I. 1991; Proteins released from Mycobacterium tuberculosis during growth. Infect Immun 59:1905–1910
    [Google Scholar]
  3. Arruda S., Bomfim G., Knights R., Huima-Byron T., Riley L. W. 1993; Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261:1454–1457 [CrossRef]
    [Google Scholar]
  4. Cole S. T., Brosch R., Parkhill J. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  5. Desjardin L. E., Hayes L. G., Sohaskey C. D., Wayne L. G., Eisenach K. D. 2001; Microaerophilic induction of the α-crystallin chaperone protein homologue ( hspX ) mRNA of Mycobacterium tuberculosis . J Bacteriol 183:5311–5316 [CrossRef]
    [Google Scholar]
  6. Florczyk M. A., McCue L. A., Stack R. F., Hauer C. R., McDonough K. A. 2001; Identification and characterization of mycobacterial proteins differentially expressed under standing and shaking culture conditions, including Rv2623 from a novel class of putative ATP-binding proteins. Infect Immun 69:5777–5785 [CrossRef]
    [Google Scholar]
  7. Haile Y., Caugant D. A., Bjune G., Wiker H. G. 2002; Mycobacterium tuberculosis mammalian cell entry operons ( mce ) homologs in Mycobacterium other than tuberculosis (MOTT). FEMS Immunol Med Microbiol 33:125–132 [CrossRef]
    [Google Scholar]
  8. Harboe M., Malin A. S., Dockrell H. S., Wiker H. G., Ulvund G., Holm A., Jorgensen M. C., Andersen P. 1998; B-cell epitopes and quantification of the ESAT-6 protein of Mycobacterium tuberculosis . Infect Immun 66:717–723
    [Google Scholar]
  9. Harboe M., Christensen A., Haile Y., Ulvund G., Ahmad S., Mustafa A. S., Wiker H. G. 1999; Demonstration of expression of six proteins of the mammalian cell entry ( mce1 ) operon of Mycobacterium tuberculosis by anti-peptide antibodies, enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction. Scand J Immunol 50:519–527 [CrossRef]
    [Google Scholar]
  10. Hernandez-Pando R., Jeyanathan M., Mengistu G., Aguilar D., Orozco H., Harboe M., Rook G. A., Bjune G. 2000; Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet 356:2133–2138 [CrossRef]
    [Google Scholar]
  11. Hu Y., Coates R. M. 1999; Transcription of two sigma 70 homologue genes, sigA and sigB , in stationary-phase Mycobacterium tuberculosis . J Bacteriol 181:469–476
    [Google Scholar]
  12. Kochi A. 1991; The global tuberculosis situation and the new control strategy of the World Health Organization. Tubercle 72:1–6 [CrossRef]
    [Google Scholar]
  13. McKinney J. D., William R., Jakobs J. R., Bloom B. R. 1998; Persisting problem in tuberculosis. In Tuberculosis pp 51–146 London: Acadamic press;
    [Google Scholar]
  14. Mustafa A. S., Oftung F., Amoudy H. A., Madi N. M., Abal A. T., Shaban F., Rosen Krands I., Andersen P. 2000; Multiple epitopes from the Mycobacterium tuberculosis ESAT-6 antigen are recognized by antigen-specific human T cell lines. Clin Infect Dis 30 (suppl. 3:S201–S205 [CrossRef]
    [Google Scholar]
  15. Phyu S., Mustafa T., Hofstad T., Nilsen R., Fosse R., Bjune G. 1998; A mouse model for latent tuberculosis. Scand J Infect Dis 30:59–68 [CrossRef]
    [Google Scholar]
  16. Sherman D. R., Voskuil M., Schnappinger D., Liao R., Harrell M. I., Schoolinik G. K. 2001; Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding α-crystallin. Proc Natl Acad Sci USA 98:7534–7539 [CrossRef]
    [Google Scholar]
  17. Smith P. G., Moss A. R. 1994; Epidemiology of tuberculosis. In Tuberculosis: Pathogenesis, Protection and Control Edited by Bloom B. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Sørensen A. L., Nagai S., Houen G., Andersen P., Andersen Å. B. 1995; Purification and characterization of low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis . Infect Immun 63:1710–1717
    [Google Scholar]
  19. Ulrichs T., Munk M. E., Mollenkopft H., Behr-Perst S., Colangeli R., Gennaro M. L., Kaufmann S. H. 1998; Differential T cell responses to Mycobacterium tuberculosis ESAT-6 in tuberculosis patients and healthy donors. Eur J Immunol 28:3949–3958 [CrossRef]
    [Google Scholar]
  20. Wayne L. G., Hayes L. G. 1996; An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64:2062–2069
    [Google Scholar]
  21. Wayne L. G., Lin K. Y. 1982; Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect Immun 37:1042–1049
    [Google Scholar]
  22. Wayne L. G., Sramek H. A. 1979; Antigenic differences between extracts of actively replicating and synchronized resting cells of Mycobacterium tuberculosis . Infect Immun 24:363–370
    [Google Scholar]
  23. Wayne L. G., Sramek H. A. 1994; Metronidazole is bactericidal for the dormant cells of Mycobacterium tuberculosis . Antimicrob Agents Chemother 38:2054–2058 [CrossRef]
    [Google Scholar]
  24. Wiker H. G., Spierings E., Kolkman M. A., Ottenhoff T. H., Harboe M. 1999; The mammalian cell entry operon 1 ( mce1 ) of Mycobacterium leprae and Mycobacterium tuberculosis . Microb Pathog 27:173–177 [CrossRef]
    [Google Scholar]
  25. Yuan Y., Crane D. D., Barry C. E.III. 1996; Stationary phase-associated protein expression in Mycobacterium tuberculosis : function of the mycobacterial α-crystallin homolog. J Bacteriol 178:4484–4492
    [Google Scholar]
  26. Yuan Y., Crane D. D., Simpson R. M., Zhu Y. Q., Hickey M. J., Sherman D. R., Barry C. E.III. 1998; The 16-kDa α-crystallin (Acr) protein of Mycobacterium tuberculosis is required for the growth in macrophages. Proc Natl Acad Sci USA 95:9578–9583 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-12-3881
Loading
/content/journal/micro/10.1099/00221287-148-12-3881
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error