1887

Abstract

A strain of in which the genes encoding the general phosphoenolpyruvate:sugar phosphotransferase system (PTS) proteins HPr and Enzyme I have been deleted, the normally cryptic gene encoding the fructose-inducible Enzyme I (EI* or EI) is expressed, and the fructose repressor protein is inactive ( or mutant) was studied. This strain lacks HPr and EI, but expresses FPr (DTP) and EI constitutively. Since FPr and EI can substitute for HPr and EI, the strain grew in minimal liquid medium supplemented with the PTS sugars glucose, fructose, acetylglucosamine, mannitol or mannose. However, it showed very poor to negligible growth on the PTS sugar glucitol. It also grew very poorly on the non-PTS sugars maltose, melibiose and especially glycerol. Adding cAMP to the medium allowed growth on glucitol, but did not affect growth on glycerol. We suggest that poor phosphorylation of the regulatory molecule Enzyme IIA by FPr is responsible for these effects.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-12-3857
2002-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/12/1483857a.html?itemId=/content/journal/micro/10.1099/00221287-148-12-3857&mimeType=html&fmt=ahah

References

  1. Chin A. M., Sutrina S., Feldheim D. A., Saier M. H. Jr 1987; Genetic expression of Enzyme I* activity of the phosphoenolpyruvate: sugar phosphotransferase system in ptsHI deletion strains of Salmonella typhimurium . J Bacteriol 169:894–896
    [Google Scholar]
  2. Cordaro J. C., Roseman S. 1972; Deletion mapping of the genes coding for HPr and Enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium . J Bacteriol 112:17–29
    [Google Scholar]
  3. Crasnier-Mednansky M., Park M. C., Studley W. K., Saier M. H. Jr 1997; Cra-mediated regulation of Escherichia coli adenylate cyclase. Microbiology 143:785–792 [CrossRef]
    [Google Scholar]
  4. Feldheim D. A., Chin A. M., Nierva C. T., Feucht B. U., Cao Y. W., Xu Y. F., Sutrina S. L., Saier M. H. Jr 1990; Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate: sugar phosphotransferase system and analysis of fructose ( fru) operon expression in Salmonella typhimurium . J Bacteriol 172:5459–5469
    [Google Scholar]
  5. Geerse R. H., Izzo F., Postma P. W. 1989; The PEP: fructose phosphotransferase system in Salmonella typhimurium : FPr combines Enzyme IIIfru and pseudo-HPr activities. Mol Gen Genet 216:517–525 [CrossRef]
    [Google Scholar]
  6. Görke B., Rak B. 1999; Catabolite control of Escherichia coli regulatory protein BglG activity by antagonistically acting phosphorylations. EMBO J 18:3370–3379 [CrossRef]
    [Google Scholar]
  7. Grenier F. C., Hayward I., Novotny M. J., Leonard J. E., Saier M. H. Jr 1985; Identification of the phosphocarrier protein Enzyme IIIglucitol: essential component of the glucitol phosphotransferase system in Salmonella typhimurium . J Bacteriol 161:1017–1022
    [Google Scholar]
  8. Holtman C. K., Pawlyk A. C., Meadow N. D., Pettigrew D. W. 2001; Reverse genetics of Escherichia coli glycerol kinase allosteric regulation and glucose control of glycerol utilization in vivo . J Bacteriol 183:3336–3344 [CrossRef]
    [Google Scholar]
  9. Inada T., Kimata K., Aiba H. 1996; Mechanism responsible for glucose-lactose diauxie in Escherichia coli : challenge to the cAMP model. Genes Cells 1:293–301 [CrossRef]
    [Google Scholar]
  10. Kimata K., Takahashi H., Inada T., Postma P., Aiba H. 1997; cAMP receptor protein-cAMP plays a crucial role in glucose-lactose diauxie by activating the major glucose transporter gene in Escherichia coli . Proc Natl Acad Sci USA 92:11583–11587
    [Google Scholar]
  11. Kundig W., Roseman S. 1971; Sugar transport. I. Isolation of a phosphotransferase system from Escherichia coli . J Biol Chem 246:1393–1406
    [Google Scholar]
  12. Lengeler J., Lin E. C. C. 1972; Reversal of the mannitol-sorbitol diauxie in Escherichia coli . J Bacteriol 112:840–848
    [Google Scholar]
  13. Lux R., Jahreis K., Bettenbrock K., Parkinson J. S., Lengeler J. W. 1995; Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli . Proc Natl Acad Sci USA 92:11583–11587 [CrossRef]
    [Google Scholar]
  14. Meadow N. D., Fox D. K., Roseman S. 1990; The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu Rev Biochem 59:497–452 [CrossRef]
    [Google Scholar]
  15. Novotny J. M., Frederickson W. L., Waygood E. B., Saier M. H. Jr 1985; Allosteric regulation of glycerol kinase by enzyme IIIglc of the phosphotransferase system in Escherichia coli and Salmonella typhimurium . J Bacteriol 162:810–816
    [Google Scholar]
  16. Postma P. W., Stock J. B. 1980; Enzymes II of the phosphotransferase system do not catalyze transport in the absence of phosphorylation. J Bacteriol 141:476–484
    [Google Scholar]
  17. Postma P. W., Lengeler J. W., Jacobson G. R. 1993; Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  18. Reddy P., Kamireddi M. 1998; Modulation of Escherichia coli adenylyl cyclase activity by catalytic-site mutants of protein IIAGlc of the phosphoenolpyruvate: sugar phosphotransferase system. J Bacteriol 180:732–737
    [Google Scholar]
  19. Reizer J., Sutrina S. L., Wu L.-F., Deutscher J., Reddy P., Saier M. H. Jr 1992; Functional interactions between proteins of the phosphoenolpyruvate: sugar phosphotransferase systems of Bacillus subtilis and Escherichia coli . J Biol Chem 267:9158–9169
    [Google Scholar]
  20. Saier M. H. Jr 1989; Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiol Rev 53:109–120
    [Google Scholar]
  21. Saier M. H. Jr, Simoni R. D., Roseman S. 1970; The physiological behavior of Enzyme I and heat-stable protein mutants of a bacterial phosphotransferase system. J Biol Chem 245:5870–5873
    [Google Scholar]
  22. Saier M. H. Jr, Simoni R. D., Roseman S. 1976; Sugar transport: properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system. J Biol Chem 251:6584–6597
    [Google Scholar]
  23. Saier M. H. Jr, Feucht B. U., Mora W. K. 1977; Sugar phosphate: sugar transphosphorylation and exchange group translocation catalyzed by the Enzyme II complexes of the bacterial phosphoenolpyruvate:sugar phosphotransferase system. J Biol Chem 252:8899–8907
    [Google Scholar]
  24. Sutrina S. L., Chin A. M., Esch F., Saier M. H. Jr 1988; Purification and characterization of the fructose-inducible HPr-like protein, FPr, and the fructose-specific Enzyme III of the phosphoenolpyruvate: sugar phosphotransferase system of Salmonella typhimurium . J Biol Chem 263:5061–5069
    [Google Scholar]
  25. Wu L.-F., Tomich J. M., Saier M. H. Jr 1990; Structure and evolution of a multidomain multiphosphoryl transfer protein. J Mol Biol 213:687–703 [CrossRef]
    [Google Scholar]
  26. Yamada M., Saier M. H. Jr 1988; Positive and negative regulators for glucitol ( gut ) operon expression in Escherichia coli . J Mol Biol 203:569–583 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-12-3857
Loading
/content/journal/micro/10.1099/00221287-148-12-3857
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error