1887

Abstract

ATCC 17933 growing aerobically on ethanol uses a pyrroloquinoline quinone-dependent ethanol oxidation system. A mutant with an interrupted putative gene, in which malate:quinone oxidoreductase (MQO), an enzyme involved in the citric acid cycle/glyoxylate cycle, was defective, showed a severe growth defect on ethanol and was unable to grow on acetate. Glucose, lactate, succinate or malate supported growth of the mutant. However, an NAD-dependent malate dehydrogenase activity could not be detected. Complementation of the mutant by the wild-type allele of the gene restored wild-type behaviour. The wild-type expressed the dye-dependent MQO and NAD(P)-dependent malic enzymes (MEs). Pyruvate carboxylase (PC) was found upon growth of the wild-type and the mutant on all substrates studied. PC activity in the wild-type was induced on glucose and lactate and was always higher on all substrates in the mutant. In ATCC 17933, an active MQO is required for growth on ethanol or acetate, while with glucose, lactate, succinate or malate an apparent bypass route operates, with MEs using malate for generating pyruvate, which is carboxylated to oxaloacetate by PC. To the authors’ knowledge, this is the first time that a specific mutant MQO phenotype has been observed, caused by the inactivation of a gene encoding MQO activity. of ATCC 17933 corresponds to () of the PAO1 genome project.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-12-3839
2002-12-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/12/1483839a.html?itemId=/content/journal/micro/10.1099/00221287-148-12-3839&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  2. Armstrong J. McD. 1964; The molar extinction coefficient of 2,6-dichlorophenol indophenol. Biochim Biophys Acta86:194–197[CrossRef]
    [Google Scholar]
  3. Austin D., Larson T. J. 1991; Nucleotide sequence of the glpD gene encoding aerobic sn -glycerol 3-phosphate dehydrogenase of Escherichia coli K-12. J Bacteriol173:101–107
    [Google Scholar]
  4. Bergmeyer J., Graßl M. 1987; Methods of Enzymatic Analysis, 3rd edn. Weinheim: VCH;
    [Google Scholar]
  5. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol14:459–472
    [Google Scholar]
  6. Cetin E. T., Töreci K. I., Ang . 1965; Encapsulated Pseudomonas aeruginosa ( Pseudomonas mucosus ) strains. J Bacteriol89:1432–1433
    [Google Scholar]
  7. Diehl A., von Wintzingerode F., Görisch H. 1998; Quinoprotein ethanol dehydrogenase of Pseudomonas aeruginosa is a homodimer – sequence of the gene and deduced structural properties of the enzyme. Eur J Biochem257:409–419[CrossRef]
    [Google Scholar]
  8. Diesterhaft M. D., Freese E. 1973; Role of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and malic enzyme during growth and sporulation of Bacillus subtilis . J Biol Chem248:6062–6070
    [Google Scholar]
  9. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci USA76:1648–1652[CrossRef]
    [Google Scholar]
  10. Geiger O., Görisch H. 1987; Enzymatic determination of pyrroloquinoline quinone using crude membranes from Escherichia coli . Anal Biochem164:418–423[CrossRef]
    [Google Scholar]
  11. Groves W. E., Davis F. C. Jr, Sells B. H. 1968; Spectrophotometric determination of microgram quantities of protein without nucleic acid interference. Anal Biochem22:195–210[CrossRef]
    [Google Scholar]
  12. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580[CrossRef]
    [Google Scholar]
  13. Hauck R., Adrian L., Wendler P., Amidjojo M., Hegemann W., Görisch H. 2001; Transformation of 2,2′-dichlorodiisopropyl ether in mixed and pure culture. Appl Microbiol Biotechnol56:491–495[CrossRef]
    [Google Scholar]
  14. Hopper D. J., Chapman P. J., Dagley S. 1970; Metabolism of l-malate and d-malate by a species of Pseudomonas . J Bacteriol104:1197–1202
    [Google Scholar]
  15. Horecker B. L., Kornberg A. 1948; The extinction coefficients of the reduced band of pyridine nucleotides. J Biol Chem175:385–390
    [Google Scholar]
  16. Kather B., Stingl K., van der Rest M. E., Altendorf K., Molenaar D. 2000; Another unusual type of citric acid cycle enzyme in Helicobacter pylori : the malate: quinone oxidoreductase. J Bacteriol182:3204–3209[CrossRef]
    [Google Scholar]
  17. Kretzschmar U., Schobert M., Görisch H. 2001; The Pseudomonas aeruginosa acsA gene, encoding an acetyl-CoA synthetase, is essential for growth on ethanol. Microbiology147:2671–2677
    [Google Scholar]
  18. Leighton M. P., Kelly D. J., Williamson M. P., Shaw J. G. 2001; An NMR and enzyme study of the carbon metabolism of Neisseria meningitidis . Microbiology147:1473–1482
    [Google Scholar]
  19. Mizuno T., Kageyama M. 1978; Separation and characterization of the outer membrane of Pseudomonas aeruginosa . J Biochem84:179–191
    [Google Scholar]
  20. Molenaar D., van der Rest M. E., Petroviæ S. 1998; Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum . Eur J Biochem254:395–403[CrossRef]
    [Google Scholar]
  21. Molenaar D., van der Rest M. E., Drysch A., Yücel R. 2000; Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Corynebacterium glutamicum . J Bacteriol182:6884–6891[CrossRef]
    [Google Scholar]
  22. O’Brien R. W., Taylor B. L. 1977; Formation and dissimilation of oxaloacetate and pyruvate in Pseudomonas citronellolis grown on noncarbohydrate substrates. J Bacteriol130:131–135
    [Google Scholar]
  23. O’Brien R. W., Chuang D. T., Taylor B. L., Utter M. F. 1977; Novel enzymic machinery for the metabolism of oxaloacetate, phosphoenolpyruvate, and pyruvate in Pseudomonas citronellolis . J Biol Chem252:1257–1263
    [Google Scholar]
  24. Peters-Wendisch P. G., Wendisch V. F., Paul S., Eikmanns B. J., Sahm H. 1997; Pyruvate carboxylase as an anaplerotic enzyme in Corynebacterium glutamicum . Microbiology143:1095–1103[CrossRef]
    [Google Scholar]
  25. Reichmann P., Görisch H. 1993; Cytochrome c 550 from Pseudomonas aeruginosa . Biochem J289:173–178
    [Google Scholar]
  26. Roehl R. A., Feary T. W., Phibbs P. V. Jr. 1983; Clustering of mutations affecting central pathway enzymes of carbohydrate catabolism in Pseudomonas aeruginosa . J Bacteriol156:1123–1129
    [Google Scholar]
  27. Rothmel R. K., Chakrabarty A. M., Berry A., Darzins A. 1991; Genetic systems in Pseudomonas . Methods Enzymol204:485–514
    [Google Scholar]
  28. Rupp M., Görisch H. 1988; Purification, crystallization and characterization of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa . Biol Chem Hoppe Seyler369:431–439[CrossRef]
    [Google Scholar]
  29. Saeki A., Matsushita K., Takeno S., Taniguchi M., Toyama H., Theeragool G., Lotong N., Adachi O. 1999; Enzymes responsible for acetate oxidation by acetic acid bacteria. Biosci Biotechnol Biochem63:2102–2109[CrossRef]
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Schobert M., Görisch H. 1999; Cytochrome c 550 is an essential component of the quinoprotein ethanol oxidation system in Pseudomonas aeruginosa : cloning and sequencing of the genes encoding cytochrome c 550 and an adjacent acetaldehyde dehydrogenase. Microbiology145:471–481[CrossRef]
    [Google Scholar]
  32. Schobert M., Görisch H. 2001; A soluble two-component regulatory system controls expression of quinoprotein ethanol dehydrogenase (QEDH) but not expression of cytochrome c 550 of the ethanol-oxidation system in Pseudomonas aeruginosa . Microbiology147:363–372
    [Google Scholar]
  33. Schweizer H. P., Klassen T. R., Hoang T. 1996; Improved methods for gene analysis in Pseudomonas . In Molecular Biology of Pseudomonads pp229–237 Edited by Nakazawa T., Furukawa K., Haas D., Silver S.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  34. Simon R., O’Connell M., Labes M., Pühler A. 1986; Plasmid vectors for the genetic analysis and manipulation of rhizobia and other gram-negative bacteria. Methods Enzymol118:640–659
    [Google Scholar]
  35. Smith A. W., Iglewski B. H. 1989; Transformation of Pseudomonas aeruginosa by electroporation. Nucleic Acids Res17:10509[CrossRef]
    [Google Scholar]
  36. Staskawicz B., Dahlbeck D., Keen N., Napoli C. 1987; Molecular characterization of cloned avirulence genes from race 0 to race 1 of Pseudomonas syringae pv. glycinea . J Bacteriol169:5789–5794
    [Google Scholar]
  37. van der Rest M. E., Frank C., Molenaar D. 2000; Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli . J Bacteriol182:6892–6899[CrossRef]
    [Google Scholar]
  38. Voegele R. T., Mitsch M. J., Finan T. M. 1999; Characterization of two members of a novel malic enzyme class. Biochim Biophys Acta1432:275–285[CrossRef]
    [Google Scholar]
  39. Wendisch V. F., de Graaf A. A., Sahm H., Eikmann B. J. 2000; Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol182:3088–3096[CrossRef]
    [Google Scholar]
  40. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene33:103–119[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-12-3839
Loading
/content/journal/micro/10.1099/00221287-148-12-3839
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error