1887

Abstract

The post-transcriptional processing of tRNAs decorates them with a number of modified bases important for their biological functions. Queuosine, found in the tRNAs with GUN anticodons (Asp, Asn, His, Tyr), is an extensively modified base whose biosynthetic pathway is still unclear. In this study, it was observed that the tRNA from B105 (a B strain) migrated faster than that from CA274 (a K-12 strain) on acid urea gels. The organization of tRNA genes in B105 was found to be typical of the B strains. Subsequent analysis of tRNA and tRNA from several strains of on acid urea gels, and modified base analysis of tRNA preparations enriched for tRNA, showed that B105 lacked queuosine in its tRNAs. However, the lack of queuosine in tRNAs was not a common feature of all B strains. The and genes in B105 were shown to be functional by their ability to complement and mutant strains. These observations suggested a block at the step of the biosynthesis of preQ (or preQ) in the B105 strain. Interestingly, a multicopy vector harbouring a functional gene was toxic to B105 but not to CA274. Also, in mixed cultures, B105 was readily competed out by the CA274 strain. The importance of these observations and this novel strain ( B105) in unravelling the mechanism of preQ or preQ biosynthesis is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-12-3779
2002-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/12/1483779a.html?itemId=/content/journal/micro/10.1099/00221287-148-12-3779&mimeType=html&fmt=ahah

References

  1. Aytac U., Gunduz U. 1994; Q-modification of tRNAs in human brain tumors. Cancer Biochem Biophys 14:93–98
    [Google Scholar]
  2. Brenner S., Beckwith J. R. 1965; Ochre mutants, a class of suppressible nonsense mutants. J Mol Biol 13:629–637 [CrossRef]
    [Google Scholar]
  3. Cayley S., Record M. T. Jr, Lewis B. A. 1989; Accumulation of 3-( N -morpholino)propanesulfonate by osmotically stressed Escherichia coli K-12. J Bacteriol 171:3597–3602
    [Google Scholar]
  4. Durand J. M., Okada N., Tobe T. 7 other authors 1994; vacC , a virulence-associated chromosomal locus of S higella flexneri , is homologous to tgt , a gene encoding tRNA-guanine transglycosylase (Tgt) of E. coli K-12. J Bacteriol 176:4627–4634
    [Google Scholar]
  5. Frey B., Janel G., Michelsen U., Kersten H. 1989; Mutations in the Escherichia coli fnr and tgt genes: control of molybdate reductase activity and the cytochrome d complex by fnr . J Bacteriol 171:1524–1530
    [Google Scholar]
  6. Gay N. J. 1984; Construction and characterization of an Escherichia coli strain with unc I mutation. J Bacteriol 158:820–825
    [Google Scholar]
  7. Gradler U., Gerber H. D., Goodenough-Lashua D. M., Garcia G. A., Ficner R., Reuter K., Stubbs M. T., Klebe G. 2001; A new target for shigellosis: rational design and crystallographic studies of inhibitors of tRNA-guanine transglycosylase. J Mol Biol 306:455–467 [CrossRef]
    [Google Scholar]
  8. Harada F., Nishimura S. 1972; Possible anticodon sequences of tRNAHis, tRNAAsn, and tRNAAsp from Escherichia coli B. Universal presence of nucleoside Q in the first position of the anticodons of these transfer ribonucleic acids. Biochemistry 11:301–308 [CrossRef]
    [Google Scholar]
  9. Langgut W. 1995; Regulation of signaling by receptor tyrosine kinases in HeLa cells involves the q-base. Biochem Biophys Res Commun 207:306–311 [CrossRef]
    [Google Scholar]
  10. Li S., Kumar N. V., Varshney U., RajBhandary U. L. 1996; Important role of the amino acid attached to tRNA in formylation and in initiation of protein synthesis in Escherichia coli . J Biol Chem 271:1022–1028 [CrossRef]
    [Google Scholar]
  11. Low K. B. 1968; Formation of merodiploids in matings with a class of Rec recipient strains of Escherichia coli K12. Proc Natl Acad Sci USA 60:160–167 [CrossRef]
    [Google Scholar]
  12. Mandal N., RajBhandary U. L. 1992; Escherichia coli B lacks one of the two initiator tRNA species present in E. coli K-12. J Bacteriol 174:7827–7830
    [Google Scholar]
  13. Mangroo D., Limbach P. A., McCloskey J. A., RajBhandary U. L. 1995; An anticodon sequence mutant of Escherichia coli initiator tRNA: possible importance of a newly acquired base modification next to the anticodon on its activity in initiation. J Bacteriol 177:2858–2862
    [Google Scholar]
  14. Maxam A. M., Gilbert W. 1980; Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560
    [Google Scholar]
  15. McCloskey J. A., Pamela F., Crain P. F. 1998; The RNA modification database – 1998. Nucleic Acids Res 26:196 [CrossRef]
    [Google Scholar]
  16. Meier F., Suter B., Grosjean H., Keith G., Kubli E. 1985; Queuosine modification of the wobble base in tRNAHis influences ‘ in vivo ’ decoding properties. EMBO J 4:823–827
    [Google Scholar]
  17. Messing J. 1981; A system for shotgun DNA sequencing. Nucleic Acids Res 9:309–321 [CrossRef]
    [Google Scholar]
  18. Morris R. C., Brown K. G., Elliot M. S. 1999; The effects of queuosine on tRNA structure and function. J Biomol Struct Dyn 16:757–774 [CrossRef]
    [Google Scholar]
  19. Nishimura S. 1972; Minor components in transfer RNA: their characterization, location, and function. Prog Nucleic Acids Res Mol Biol 12:49–85
    [Google Scholar]
  20. Nishimura S., Shindo-Okada N., Kasai H., Kuchino Y., Noguchi S., Ligo M., Hoshi A. 1983; Characterization and analysis of oncofetal tRNA and its possible application for cancer diagnosis and therapy. Recent Results Cancer Res 84:401–412
    [Google Scholar]
  21. Noguchi S., Nishimura Y., Hirota Y., Nishimura S. 1982; Isolation and characterization of an Escherichia coli mutant lacking tRNA-guanine transglycosylase. Function and biosynthesis of queuosine in the tRNA. J Biol Chem 257:6544–6550
    [Google Scholar]
  22. Okada N., Noguchi S., Kasai H., Shindo-Okada N., Ohgi T., Goto T., Nishimura S. 1979; Novel mechanism of post-transcriptional modification of tRNA. J Biol Chem 254:3067–3073
    [Google Scholar]
  23. Randerath E., Agarwal H. P., Randerath K. 1984; Specific lack of the hypermodified nucleoside, queuosine, in hepatoma mitochondrial aspartate transfer RNA and its possible biological significance. Cancer Res 44:1167–1171
    [Google Scholar]
  24. Reed K. C., Mann D. A. 1985; Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res 13:7207–7221 [CrossRef]
    [Google Scholar]
  25. Reuter K., Slany R., Ullrich F., Kersten H. 1991; Structure and organization of Escherichia coli genes involved in biosynthesis of the deazaguanine derivative queuosine, a nutrient factor for eukaryotes. J Bacteriol 173:2256–2264
    [Google Scholar]
  26. Romier C., Reuter K., Suck D., Ficner R. 1996; Mutagenesis and crystallographic studies of Zymomonas mobilis tRNA-guanine transglycosylase reveal aspartate 102 as the active site nucleophile. Biochemistry 35:15734–15739 [CrossRef]
    [Google Scholar]
  27. Rozenski J., Crain P. F., McCloskey J. A. 1999; The RNA modification database: 1999 update. Nucleic Acids Res 27:196–197 [CrossRef]
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Seong B. L., RajBhandary U. L. 1987; Escherichia coli formylmethionine tRNA: mutations in GGG/CCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop. Proc Natl Acad Sci USA 84:334–338 [CrossRef]
    [Google Scholar]
  30. Slany R. K., Kersten H. 1994; Genes, enzymes and coenzymes of queuosine biosynthesis in procaryotes. Biochimie 76:1178–1182 [CrossRef]
    [Google Scholar]
  31. Sprinzl M., Hartman T., Weber J., Blank J., Zeidler R. 1989; Sequences supplement. Nucleic Acids Res 17:r1–r172 [CrossRef]
    [Google Scholar]
  32. Studier F. W., Moffatt B. A. 1986; Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130 [CrossRef]
    [Google Scholar]
  33. Thanedar S., Kumar N. V., Varshney U. 2000; The fate of the initiator tRNAs is sensitive to the critical balance between interacting proteins. J Biol Chem 275:20361–20367 [CrossRef]
    [Google Scholar]
  34. Thanedar S., Dineshkumar T. K., Varshney U. 2001; The mere lack of rT modification in initiator tRNA does not facilitate formylation-independent initiation in Escherichia coli . J Bacteriol 183:7397–7402 [CrossRef]
    [Google Scholar]
  35. Timms A. R., Bridges B. 1996; The tyrT locus of E. coli B. J Bacteriol 178:2469–2470
    [Google Scholar]
  36. Varshney U., Lee C. P., RajBhandary U. L. 1991; Direct analysis of aminoacylation levels of tRNA in vivo . J Biol Chem 266:24712–24718
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-12-3779
Loading
/content/journal/micro/10.1099/00221287-148-12-3779
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error