1887

Abstract

Acquisition of virulence genes encoded on mobile genetic elements has played an important role in the emergence of pathogenic isolates of , the causative agent of the diarrhoeal disease cholera. The genes encoding cholera toxin (), the main cause of profuse secretory diarrhoea in cholera, are encoded on a filamentous bacteriophage CTXϕ. The toxin coregulated pilus (TCP), an essential intestinal colonization factor, was originally designated as part of a pathogenicity island named the pathogenicity island (VPI), but this island has more recently been proposed to be the genome of a filamentous phage, VPIϕ. In this study, it is shown that , which encodes neuraminidase, maps within a novel pathogenicity island designated VPI-2. The 573 kb VPI-2 has all of the characteristic features of a pathogenicity island, including the presence of a bacteriophage-like integrase (), insertion in a tRNA gene (serine) and the presence of direct repeats at the chromosomal integration sites. Additionally, the G+C content of VPI-2 (42 mol%) is considerably lower than that of the entire genome (47 mol%). VPI-2 encodes several gene clusters, such as a restriction modification system ( and ) and genes required for the utilization of amino sugars (- region) as well as neuraminidase. To determine the distribution of VPI-2 among , 78 natural isolates were examined using PCR and Southern hybridization analysis for the presence of this region. All toxigenic O1 serogroup isolates examined contained VPI-2, whereas non-toxigenic isolates lacked the island. Of 14 O139 serogroup isolates examined, only one strain, MO2, contained the entire 573 kb island, whereas 13 O139 isolates contained only a 200 kb region with most of the 5′ region of VPI-2 which included deleted in these strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3681
2002-11-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483681a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3681&mimeType=html&fmt=ahah

References

  1. Albert, M. J., Siddique, A. K., Islam, M. S., Faruque, A. S., Ansaruzzaman, M., Faruque, S. M. & Sack, R. B. ( 1993; ). Large outbreak of clinical cholera due to Vibrio cholerae non-O1 in Bangladesh. Lancet 341, 704.
    [Google Scholar]
  2. Altschul, S., Madden, T., Schaffer, A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402.[CrossRef]
    [Google Scholar]
  3. Barua, D. (1992). History of cholera. In Cholera, pp. 1–36. Edited by D. Barua & W. B. Greenough 3rd. New York: Plenum.
  4. Berche, P., Poyart, C., Abachin, E., Lelievre, H., Vandepitte, J., Dodin, A. & Fournier, J. M. ( 1994; ). The novel epidemic strain O139 is closely related to the pandemic strain O1 of Vibrio cholerae. J Infect Dis 170, 701-704.[CrossRef]
    [Google Scholar]
  5. Bik, E. M., Bunschoten, A. E., Gouw, R. D. & Mooi, F. R. ( 1995; ). Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J 14, 209-216.
    [Google Scholar]
  6. Bik, E., Gouw, R. & Mooi, F. ( 1996; ). DNA fingerprinting of Vibrio cholerae strains with a novel insertion sequence element: a tool to identify epidemic strains. J Clin Microbiol 34, 1453-1461.
    [Google Scholar]
  7. Blattner, F. R., Plunkett, G. I., Bloch, C. A. & 14 other authors ( 1997; ). The complete genome sequence of Escherichia coli K12. Science 277, 1453–1474.[CrossRef]
    [Google Scholar]
  8. Blum, G., Ott, M., Lischewski, A., Ritter, A., Imrich, H., Tschape, H. & Hacker, J. ( 1994; ). Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun 62, 606-614.
    [Google Scholar]
  9. Canard, B. & Cole, S. T. ( 1989; ). Genome organization of the anaerobic pathogen Clostridium perfringens. Proc Natl Acad Sci USA 86, 6676-6680.[CrossRef]
    [Google Scholar]
  10. Cheetham, B., Tattersall, D., Bloomfield, G., Rood, J. & Katz, M. ( 1995; ). Identification of a gene encoding a bacteriophage-related integrase in a vap region of the Dichelobacter nodosus genome. Gene 162, 53-58.[CrossRef]
    [Google Scholar]
  11. Cholera Working Group. ( 1993; ). Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae non-O139 Bengal. Lancet 342, 387–390.[CrossRef]
    [Google Scholar]
  12. Comstock, L. E., Maneval, D.Jr, Panigrahi, P., Joseph, A., Levine, M. M., Kaper, J. B., Morris, J. G.Jr & Johnson, J. A. ( 1995; ). The capsule and O antigen in Vibrio cholerae O139 Bengal are associated with a genetic region not present in Vibrio cholerae O1. Infect Immun 63, 317-323.
    [Google Scholar]
  13. Dziejman, M., Balon, E., Boyd, D., Fraser, C. M., Heidelberg, J. F. & Mekalanos, J. J. ( 2002; ). Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci USA 99, 1556-1561.[CrossRef]
    [Google Scholar]
  14. Faruque, S. M., Ahmed, K. M., Abdul Alim, A. R. M., Qadri, F., Siddique, A. K. & Albert, M. J. ( 1997; ). Emergence of a new clone of toxigenic Vibrio cholerae O1 biotype El Tor displacing V. cholerae O139 Bengal in Bangladesh. J Clin Microbiol 35, 624-630.
    [Google Scholar]
  15. Figueroa-Bossi, N., Uzzau, S., Maloriol, D. & Bossi, L. ( 2001; ). Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. Mol Microbiol 39, 260-271.[CrossRef]
    [Google Scholar]
  16. Fleischmann, R. D., Adams, M. D., White, O. & 37 other authors ( 1995; ). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.[CrossRef]
    [Google Scholar]
  17. Galen, J. E., Ketley, J. M., Fasano, A., Richardson, S. H., Wasserman, S. S. & Kaper, J. B. ( 1992; ). Role of Vibrio cholerae neuraminidase in the function of cholera toxin. Infect Immun 60, 406-415.
    [Google Scholar]
  18. Hacker, J., Blum-Oehler, G., Muhldorfer, I. & Tschape, H. ( 1997; ). Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23, 1089-1097.[CrossRef]
    [Google Scholar]
  19. Heidelberg, J. F., Eisen, J. A., Nelson, W. C. & 23 other authors ( 2000; ). DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477–483.[CrossRef]
    [Google Scholar]
  20. Hoyer, L. L., Hamilton, A. C., Steenbergen, S. M. & Vimr, E. R. ( 1992; ). Cloning, sequencing and distribution of the Salmonella typhimurium LT2 sialidase gene, nanH, provides evidence for interspecies gene transfer. Mol Microbiol 6, 873-884.[CrossRef]
    [Google Scholar]
  21. Kaper, J. B., Morris, J. G.Jr & Levine, M. M. ( 1995; ). Cholera. Clin Microbiol Rev 8, 48-86.
    [Google Scholar]
  22. Karaolis, D. K., Johnson, J. A., Bailey, C. C., Boedeker, E. C., Kaper, J. B. & Reeves, P. R. ( 1998; ). A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci USA 95, 3134-3139.[CrossRef]
    [Google Scholar]
  23. Karaolis, D. K., Somara, S., Maneval, D. R.Jr, Johnson, J. A. & Kaper, J. B. ( 1999; ). A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature 399, 375-379.[CrossRef]
    [Google Scholar]
  24. Kovach, M. E., Shaffer, M. D. & Peterson, K. M. ( 1996; ). A putative integrase gene defines the distal end of a large cluster of ToxR-regulated colonization genes in Vibrio cholerae. Microbiology 142, 2165-2174.[CrossRef]
    [Google Scholar]
  25. McClelland, M., Sanderson, K., Spieth, J. & 23 other authors ( 2001; ). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856.[CrossRef]
    [Google Scholar]
  26. McDaniel, T. & Kaper, J. ( 1997; ). A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol Microbiol 23, 399-407.[CrossRef]
    [Google Scholar]
  27. McShan, W., Tang, Y. & Ferretti, J. ( 1997; ). Bacteriophage T12 of Streptococcus pyogenes integrates into the gene encoding a serine tRNA. Mol Microbiol 23, 719-728.[CrossRef]
    [Google Scholar]
  28. O’Shea, Y. A. & Boyd, E. F. (2002). Mobilization of the Vibrio pathogenicity island between Vibrio cholerae isolates mediated via CP-T1 generalized transduction. FEMS Microbiol Lett (in press).
  29. Perna, N. T., Plunkett, G., III, Burland, V. & 25 other authors ( 2001; ). Genome sequence of enterohemorrhagic Escherichia coli O157:H7. Nature 409, 529–533.[CrossRef]
    [Google Scholar]
  30. Prere, M., Chandler, M. & Fayet, O. ( 1991; ). Transposition in Shigella dysenteriae: isolation and analysis of IS911, a new member of the IS3 group of insertion sequences. Res Microbiol 142, 489-498.[CrossRef]
    [Google Scholar]
  31. Ramamurthy, T., Garg, S., Sharma, R. & others ( 1993; ). Emergence of a novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet 341, 703–704.
    [Google Scholar]
  32. Roggentin, P., Schauer, R., Hoyer, L. L. & Vimr, E. R. ( 1993; ). The sialidase superfamily and its spread by horizontal gene transfer. Mol Microbiol 9, 915-921.[CrossRef]
    [Google Scholar]
  33. Sakurada, K., Ohta, T. & Hasegawa, M. ( 1992; ). Cloning, expression and characterization of the Micromonspora viridifaciens neuraminidase in Streptomyces lividans. J Bacteriol 174, 6896-6903.
    [Google Scholar]
  34. Sears, C. L. & Kaper, J. L. ( 1996; ). Enteric bacterial toxins: mechanism of action and linkage to intestinal secretion. Microbiol Rev 60, 167-215.
    [Google Scholar]
  35. Simpson, A., Reinach, F. C., Arruda, P. & 113 other authors ( 2000; ). The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis. Nature 406, 151–157.[CrossRef]
    [Google Scholar]
  36. Stroeher, U. H., Parasivam, G., Dredge, B. K. & Manning, P. A. ( 1997; ). Novel Vibrio cholerae O139 genes involved in lipopolysaccharide biosynthesis. J Bacteriol 179, 2740-2747.
    [Google Scholar]
  37. Taylor, R. K., Miller, V. L., Furlong, D. B. & Mekalanos, J. J. ( 1987; ). Use of phoA gene fusions to identify a pilus colonization factor co-ordinately regulated with cholera toxin. Proc Natl Acad Sci USA 84, 2833-2837.[CrossRef]
    [Google Scholar]
  38. Waldor, M. K. & Mekalanos, J. J. ( 1994; ). Vibrio cholerae O139 specific gene sequences. Lancet 343, 1366.
    [Google Scholar]
  39. Waldor, M. K. & Mekalanos, J. J. ( 1996; ). Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910-1914.[CrossRef]
    [Google Scholar]
  40. Wood, M., Jones, M., Watson, P., Hedges, S. & Wallis, T. G. E. ( 1998; ). Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol Microbiol 29, 883-891.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3681
Loading
/content/journal/micro/10.1099/00221287-148-11-3681
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error