1887

Abstract

Acquisition of virulence genes encoded on mobile genetic elements has played an important role in the emergence of pathogenic isolates of , the causative agent of the diarrhoeal disease cholera. The genes encoding cholera toxin (), the main cause of profuse secretory diarrhoea in cholera, are encoded on a filamentous bacteriophage CTXϕ. The toxin coregulated pilus (TCP), an essential intestinal colonization factor, was originally designated as part of a pathogenicity island named the pathogenicity island (VPI), but this island has more recently been proposed to be the genome of a filamentous phage, VPIϕ. In this study, it is shown that , which encodes neuraminidase, maps within a novel pathogenicity island designated VPI-2. The 573 kb VPI-2 has all of the characteristic features of a pathogenicity island, including the presence of a bacteriophage-like integrase (), insertion in a tRNA gene (serine) and the presence of direct repeats at the chromosomal integration sites. Additionally, the G+C content of VPI-2 (42 mol%) is considerably lower than that of the entire genome (47 mol%). VPI-2 encodes several gene clusters, such as a restriction modification system ( and ) and genes required for the utilization of amino sugars (- region) as well as neuraminidase. To determine the distribution of VPI-2 among , 78 natural isolates were examined using PCR and Southern hybridization analysis for the presence of this region. All toxigenic O1 serogroup isolates examined contained VPI-2, whereas non-toxigenic isolates lacked the island. Of 14 O139 serogroup isolates examined, only one strain, MO2, contained the entire 573 kb island, whereas 13 O139 isolates contained only a 200 kb region with most of the 5′ region of VPI-2 which included deleted in these strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3681
2002-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483681a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3681&mimeType=html&fmt=ahah

References

  1. Albert M. J, Siddique A. K, Islam M. S, Faruque A. S, Ansaruzzaman M, Faruque S. M., Sack R. B. 1993; Large outbreak of clinical cholera due to Vibrio cholerae non-O1 in Bangladesh. Lancet 341:704
    [Google Scholar]
  2. Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W., Lipman D. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  3. Barua D. 1992; History of cholera. In Cholera pp 1–36 Edited by Barua D., Greenough W. B. 3rd New York: Plenum;
    [Google Scholar]
  4. Berche P, Poyart C, Abachin E, Lelievre H, Vandepitte J, Dodin A., Fournier J. M. 1994; The novel epidemic strain O139 is closely related to the pandemic strain O1 of Vibrio cholerae . J Infect Dis 170:701–704
    [Google Scholar]
  5. Bik E. M, Bunschoten A. E, Gouw R. D., Mooi F. R. 1995; Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J 14:209–216
    [Google Scholar]
  6. Bik E, Gouw R., Mooi F. 1996; DNA fingerprinting of Vibrio cholerae strains with a novel insertion sequence element: a tool to identify epidemic strains. J Clin Microbiol 34:1453–1461
    [Google Scholar]
  7. Blattner F. R, Plunkett G. I, Bloch C. A. 14 other authors 1997; The complete genome sequence of Escherichia coli K12. Science 277:1453–1474
    [Google Scholar]
  8. Blum G, Ott M, Lischewski A, Ritter A, Imrich H, Tschape H., Hacker J. 1994; Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun 62:606–614
    [Google Scholar]
  9. Canard B., Cole S. T. 1989; Genome organization of the anaerobic pathogen Clostridium perfringens . Proc Natl Acad Sci USA 86:6676–6680
    [Google Scholar]
  10. Cheetham B, Tattersall D, Bloomfield G, Rood J., Katz M. 1995; Identification of a gene encoding a bacteriophage-related integrase in a vap region of the Dichelobacter nodosus genome. Gene 162:53–58
    [Google Scholar]
  11. Cholera Working Group 1993; Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae non-O139 Bengal. Lancet 342:387–390
    [Google Scholar]
  12. Comstock L. E, Maneval D. Jr, Panigrahi P, Joseph A, Levine M. M, Kaper J. B, Morris J. G. Jr, Johnson J. A. 1995; The capsule and O antigen in Vibrio cholerae O139 Bengal are associated with a genetic region not present in Vibrio cholerae O1. Infect Immun 63:317–323
    [Google Scholar]
  13. Dziejman M, Balon E, Boyd D, Fraser C. M, Heidelberg J. F., Mekalanos J. J. 2002; Comparative genomic analysis of Vibrio cholerae : genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci USA 99:1556–1561
    [Google Scholar]
  14. Faruque S. M, Ahmed K. M, Abdul Alim A. R. M, Qadri F, Siddique A. K., Albert M. J. 1997; Emergence of a new clone of toxigenic Vibrio cholerae O1 biotype El Tor displacing V. cholerae O139 Bengal in Bangladesh. J Clin Microbiol 35:624–630
    [Google Scholar]
  15. Figueroa-Bossi N, Uzzau S, Maloriol D., Bossi L. 2001; Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella . Mol Microbiol 39:260–271
    [Google Scholar]
  16. Fleischmann R. D, Adams M. D, White O. 37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512
    [Google Scholar]
  17. Galen J. E, Ketley J. M, Fasano A, Richardson S. H, Wasserman S. S., Kaper J. B. 1992; Role of Vibrio cholerae neuraminidase in the function of cholera toxin. Infect Immun 60:406–415
    [Google Scholar]
  18. Hacker J, Blum-Oehler G, Muhldorfer I., Tschape H. 1997; Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23:1089–1097
    [Google Scholar]
  19. Heidelberg J. F, Eisen J. A, Nelson W. C. 23 other authors 2000; DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–483
    [Google Scholar]
  20. Hoyer L. L, Hamilton A. C, Steenbergen S. M., Vimr E. R. 1992; Cloning, sequencing and distribution of the Salmonella typhimurium LT2 sialidase gene, nanH , provides evidence for interspecies gene transfer. Mol Microbiol 6:873–884
    [Google Scholar]
  21. Kaper J. B, Morris J. G. Jr, Levine M. M. 1995; Cholera. Clin Microbiol Rev 8:48–86
    [Google Scholar]
  22. Karaolis D. K, Johnson J. A, Bailey C. C, Boedeker E. C, Kaper J. B., Reeves P. R. 1998; A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci USA 95:3134–3139
    [Google Scholar]
  23. Karaolis D. K, Somara S, Maneval D. R. Jr, Johnson J. A., Kaper J. B. 1999; A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature 399:375–379
    [Google Scholar]
  24. Kovach M. E, Shaffer M. D., Peterson K. M. 1996; A putative integrase gene defines the distal end of a large cluster of ToxR-regulated colonization genes in Vibrio cholerae . Microbiology 142:2165–2174
    [Google Scholar]
  25. McClelland M, Sanderson K, Spieth J. 23 other authors 2001; Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856
    [Google Scholar]
  26. McDaniel T., Kaper J. 1997; A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol Microbiol 23:399–407
    [Google Scholar]
  27. McShan W, Tang Y., Ferretti J. 1997; Bacteriophage T12 of Streptococcus pyogenes integrates into the gene encoding a serine tRNA. Mol Microbiol 23:719–728
    [Google Scholar]
  28. O’Shea Y. A., Boyd E. F. 2002; Mobilization of the Vibrio pathogenicity island between Vibrio cholerae isolates mediated via CP-T1 generalized transduction. FEMS Microbiol Lett in press
    [Google Scholar]
  29. Perna N. T, Plunkett G. III, Burland V. 25 other authors 2001; Genome sequence of enterohemorrhagic Escherichia coli O157: H7. Nature 409:529–533
    [Google Scholar]
  30. Prere M, Chandler M., Fayet O. 1991; Transposition in Shigella dysenteriae : isolation and analysis of IS 911 , a new member of the IS 3 group of insertion sequences. Res Microbiol 142:489–498
    [Google Scholar]
  31. Ramamurthy T, Garg S, Sharma R. others 1993; Emergence of a novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet 341:703–704
    [Google Scholar]
  32. Roggentin P, Schauer R, Hoyer L. L., Vimr E. R. 1993; The sialidase superfamily and its spread by horizontal gene transfer. Mol Microbiol 9:915–921
    [Google Scholar]
  33. Sakurada K, Ohta T., Hasegawa M. 1992; Cloning, expression and characterization of the Micromonspora viridifaciens neuraminidase in Streptomyces lividans . J Bacteriol 174:6896–6903
    [Google Scholar]
  34. Sears C. L., Kaper J. L. 1996; Enteric bacterial toxins: mechanism of action and linkage to intestinal secretion. Microbiol Rev 60:167–215
    [Google Scholar]
  35. Simpson A, Reinach F. C, Arruda P. 113 other authors 2000; The genome sequence of the plant pathogen Xylella fastidiosa . The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis. Nature 406:151–157
    [Google Scholar]
  36. Stroeher U. H, Parasivam G, Dredge B. K., Manning P. A. 1997; Novel Vibrio cholerae O139 genes involved in lipopolysaccharide biosynthesis. J Bacteriol 179:2740–2747
    [Google Scholar]
  37. Taylor R. K, Miller V. L, Furlong D. B., Mekalanos J. J. 1987; Use of phoA gene fusions to identify a pilus colonization factor co-ordinately regulated with cholera toxin. Proc Natl Acad Sci USA 84:2833–2837
    [Google Scholar]
  38. Waldor M. K., Mekalanos J. J. 1994; Vibrio cholerae O139 specific gene sequences. Lancet 343:1366
    [Google Scholar]
  39. Waldor M. K., Mekalanos J. J. 1996; Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914
    [Google Scholar]
  40. Wood M, Jones M, Watson P, Hedges S., Wallis T. G. E. 1998; Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol Microbiol 29:883–891
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3681
Loading
/content/journal/micro/10.1099/00221287-148-11-3681
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error