1887

Abstract

Genes encoding pediocin-like bacteriocins are usually co-transcribed with a gene encoding a cognate immunity protein. To investigate the functionality and specificity of immunity proteins, immunity genes belonging to the bacteriocins curvacin A, enterocin A, enterocin P, leucocin A, pediocin PA-1 and sakacin P, as well as a putative immunity gene, , were expressed in three bacteriocin-sensitive lactic acid bacteria (, and ). The transformed indicator strains, each containing one of the immunity genes, were tested for sensitivity towards seven different purified bacteriocins (curvacin A, enterocin A, enterocin P, leucocin A, leucocin C, pediocin PA-1 and sakacin P). Cross-immunity was observed almost exclusively in situations where either the bacteriocins or the immunity proteins belonged to the same sequence-based subgroup. In a few cases, the functionality of immunity proteins was strain-dependent; e.g. the leucocin A immunity gene provided immunity to enterocin A, pediocin PA-1 and leucocin A in , whereas in the other two indicators, this gene provided immunity to leucocin A only. The gene, which is transcribed without a cognate bacteriocin, was shown to encode a functional immunity protein that expands the bacteriocin resistance of the strain possessing this gene. The results show that the bacteriocin sensitivity of a lactic acid bacterium strain can depend on (1) the presence of immunity genes in connection with its own bacteriocin production, (2) the presence of extra immunity genes and (3) more general properties of the strain such as the membrane composition or the presence of receptors.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3661
2002-11-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483661a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3661&mimeType=html&fmt=ahah

References

  1. Atrih A, Rekhif N, Moir A. J, Lebrihi A., Lefebvre G. 2001; Mode of action, purification and amino acid sequence of plantaricin C19, an anti- Listeria bacteriocin produced by Lactobacillus plantarum C19. Int J Food Microbiol 68:93–104
    [Google Scholar]
  2. Aukrust T. W, Brurberg M. B., Nes I. F. 1995; Transformation of Lactobacillus by electroporation. In Methods in Molecular Biology vol. 47Electroporation Protocols for Microorganisms pp 201–208 Edited by Nickoloff J. A. Totowa, NJ: Humana Press;
    [Google Scholar]
  3. Axelsson L., Holck A. 1995; The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Bacteriol 177:2125–2137
    [Google Scholar]
  4. Axelsson L, Katla T, Bjørnslett M, Eijsink V. G. H., Holck A. 1998; A system for heterologous expression of bacteriocins in Lactobacillus sake . FEMS Microbiol Lett 168:137–143
    [Google Scholar]
  5. Aymerich T, Holo H, Håvarstein L. S, Hugas M, Garriga M., Nes I. F. 1996; Biochemical and genetic characterization of enterocin A from Enterococcus faecium , a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl Environ Microbiol 62:1676–1682
    [Google Scholar]
  6. Brurberg M. B, Nes I. F., Eijsink V. G. H. 1997; Pheromone-induced production of antimicrobial peptides in Lactobacillus . Mol Microbiol 26:347–360
    [Google Scholar]
  7. Chikindas M. L, Garcia-Garcera M. J, Driessen A. J. M, Ledeboer A. M, Nissen-Meyer J, Nes I. F, Abee T, Konings W. N., Venema G. 1993; Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl Environ Microbiol 59:3577–3584
    [Google Scholar]
  8. Cintas L. M, Casaus P, Håvarstein L. S, Hernández P. E., Nes I. F. 1997; Biochemical and genetical characterization of enterocin P, a novel sec -dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63:4321–4330
    [Google Scholar]
  9. Crandal A. D., Montville T. 1998; Nisin resistance in Listeria monocytogenes ATCC700302 is a complex phenotype. Appl Environ Microbiol 64:231–237
    [Google Scholar]
  10. Dalet K, Briand C, Cenatiempo Y., Héchard Y. 2000; The rpoN gene of Enterococcus faecalis directs sensitivity to subclass IIa bacteriocins. Curr Microbiol 41:441–443
    [Google Scholar]
  11. Dalet K, Cenatiempo Y, Cossart P. The European Listeria Genome Consortium Héchard Y. 2001; A σ54-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147:3263–3269
    [Google Scholar]
  12. Dayem M. A, Fleury Y, Devilliers G, Chaboisseau E, Girard R, Nicolas P., Delfor A. 1996; The putative immunity protein of the Gram-positive bacterium Leuconostoc mesenteroides is preferentially located in the cytoplasm compartment. FEMS Microbiol Lett 138:251–259
    [Google Scholar]
  13. Dower D. J, Miller J. F., Ragsdale C. W. 1998; High efficiency transformation of Escherichia coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145
    [Google Scholar]
  14. Eijsink V. G. H, Brurberg M. B, Midelhoven P. J., Nes I. F. 1996; Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. J Bacteriol 178:2232–2237
    [Google Scholar]
  15. Eijsink V. G. H, Skeie M, Middelhoven H, Brurberg M. B., Nes I. F. 1998; Comparative studies of pediocin-like bacteriocins. Appl Environ Microbiol 64:3275–3281
    [Google Scholar]
  16. Ennahar S, Sashihara T, Sonomoto K., Ishizaki A. 2000; Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24:85–106
    [Google Scholar]
  17. Fimland G, Blingsmo O. R, Sletten K, Jung G, Nes I. F., Nissen-Meyer J. 1996; New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins: the C-terminal region is important for determining specificity. Appl Environ Microbiol 62:3313–3318
    [Google Scholar]
  18. Fimland G, Johnsen L, Axelsson L, Brurberg M. B, Nes I. F, Eijsink V. G. H., Nissen-Meyer J. 2000; A C-terminal disulfide bridge in pediocin-like bacteriocins renders bacteriocin activity less temperature dependent and is a major determinant of the antimicrobial spectrum. J Bacteriol 182:2643–2648
    [Google Scholar]
  19. Fimland G, Eijsink V. G. H., Nissen-Meyer J. 2002a; Mutational analysis of the role of tryptophan residues in the antimicrobial peptide sakacin P. Biochemistry 41:9508–9515
    [Google Scholar]
  20. Fimland G, Sletten K., Nissen-Meyer J. 2002b; The complete amino acid sequence of the pediocin-like antimicrobial peptide leucocin C. Biochem Biophys Res Commun 295:826–827
    [Google Scholar]
  21. Fregeau Gallagher N. L, Sailer M, Niemczura W. P, Nakashima T. T, Stiles M. E., Vederas J. C. 1997; Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: Spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. Biochemistry 36:15062–15072
    [Google Scholar]
  22. Fremaux C, Héchard Y., Cenatiempo Y. 1995; Mesentericin Y105 gene clusters in Leuconostoc mesenteroides Y105. Microbiology 141:1637–1645
    [Google Scholar]
  23. Hastings J. W, Sailer M, Johnson K, Roy K. L, Vederas J. C., Stiles M. 1991; Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidium . J Bacteriol 173:7491–7500
    [Google Scholar]
  24. Héchard Y, Pelletier C, Cenatiempo Y., Frère J. 2001; Analysis of σ54-dependent genes in Enterococcus faecalis : a mannose PTS permease (EIIman) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147:1575–1580
    [Google Scholar]
  25. Holo H., Nes I. F. 1995; Transformation of Lactococcus by electroporation. In Methods in Molecular Biology vol. 47Electroporation Protocols for Microorganisms pp 195–199 Edited by Nickoloff J. A. Totowa, NJ: Humana Press;
    [Google Scholar]
  26. Hühne K, Axelsson L, Holck A., Kröckel L. 1996; Analysis of the sakacin P gene cluster from Lactobacillus sake Lb674 and its expression in sakacin-negative Lb. sake strains. Microbiology 142:1437–1448
    [Google Scholar]
  27. Jack R. W, Wan J, Gordon J, Harmark K, Davidson B. E, Hillier A. J, Wettenhall R. E. H, Hickey M. W., Coventry M. J. 1996; Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by Carnobacterium piscicola JG126. Appl Environ Microbiol 62:2897–2903
    [Google Scholar]
  28. Kalmokoff M. L, Banerjee S. K, Cyr T, Hefford M. A., Gleeson T. 2001; Identification of a new plasmid-encoded sec -dependent bacteriocin produced by Listeria innocua 743. Appl Environ Microbiol 67:4041–4047
    [Google Scholar]
  29. Le Marrec C, Hyronimus B, Bressollier P, Verneuil B., Urdaci M. C. 2000; Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I4 . Appl Environ Microbiol 66:5213–5220
    [Google Scholar]
  30. Marugg J. D, Gonzalez C. F, Kunka B. S, Lederboer A. M, Pucci M. J, Toonen M. Y, Walker S. A, Zoetmulder L. C. M., Vandenbergh P. A. 1992; Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0. Appl Environ Microbiol 58:2360–2367
    [Google Scholar]
  31. Métivier A, Pilet M.-F, Dousset X, Sorokine O, Anglade P, Zagorec M, Piard J.-C, Marion D, Cenatiempo Y., Fremaux C. 1998; Divercin V41, a new bacteriocin with two disulphide bonds produced by Carnobacterium divergens V41: primary structure and genomic organization. Microbiology 144:2837–2844
    [Google Scholar]
  32. Miller K. W, Schamber R, Osmanagaoglu O., Ray B. 1998; Isolation and characterization of pediocin AcH chimeric protein mutants with altered bactericidal activity. Appl Environ Microbiol 64:1997–2005
    [Google Scholar]
  33. Nes I. F., Holo H. 2000; Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 55:50–61
    [Google Scholar]
  34. Nes I. F, Holo H, Fimland G, Hauge H. H., Nissen-Meyer J. 2002; Unmodified peptide-bacteriocins (class II) produced by lactic acid bacteria. In Peptide Antibiotics, Discovery, Modes of Action and Application Edited by Dutton C. J., Haxell M. A., McArthur H. A. I., Wax R. G. New York: Marcel Decker;
    [Google Scholar]
  35. Nieto Lozano J. C, Nissen-Meyer J, Sletten K, Peláz C., Nes I. F. 1992; Purification and amino acid sequences of a bacteriocin produced by Pediococcus acidilactici . J Gen Microbiol 138:1985–1990
    [Google Scholar]
  36. Nissen-Meyer J, Holo H, Håvarstein L. S, Sletten K., Nes I. F. 1992; A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol 174:5686–5692
    [Google Scholar]
  37. Nissen-Meyer J, Håvarstein L. S, Holo H, Sletten K., Nes I. F. 1993; Association of the lactococcin A immunity factor with the cell membrane: purification and characterization of the immunity factor. J Gen Microbiol 139:1503–1509
    [Google Scholar]
  38. Quadri L. E. N, Sailer M, Roy K. L, Vederas J. C., Stiles M. E. 1994; Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. J Biol Chem 269:12204–12211
    [Google Scholar]
  39. Quadri L. E. N, Sailer M, Terbiznik M. R, Roy K. L, Vederas J. C., Stiles M. E. 1995; Characterization of the protein conferring immunity to the antimicrobial peptide carnobacteriocin B2 and expression of carnobacteriocins B2 and BM1. J Bacteriol 177:1144–1151
    [Google Scholar]
  40. Quadri L. E. N, Kleerebezem M, Kuipers O. P, de Vos W. M, Roy K. L, Vederas J. C., Stiles M. E. 1997; Characterization of a locus from Carnobacterium piscicola LV17B involved in bacteriocin production and immunity: evidence for global inducer-mediated transcription regulation. J Bacteriol 179:6163–6171
    [Google Scholar]
  41. Ramnath M, Beukes M, Tamura K., Hastings J. W. 2000; Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes , as shown by two-dimensional sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Appl Environ Microbiol 66:3098–3101
    [Google Scholar]
  42. Shepard D. B., Gilmore M. S. 1995; Electroporation and efficient transformation of Enterococcus faecalis grown in high concentration of glycine. In Methods in Molecular Biology vol. 47Electroporation Protocols for Microorganisms pp 217–226 Edited by Nickoloff J. A. Totowa, NJ: Humana Press;
    [Google Scholar]
  43. Stoffels G, Nissen-Meyer J, Gudmundsdottir A, Sletten K, Holo H., Nes I. F. 1992; Purification and characterization of a new bacteriocin isolated from a Carnobacterium sp. Appl Environ Microbiol 58:1417–1422
    [Google Scholar]
  44. Tichaczek P. S, Vogel R. F., Hammes W. P. 1993; Cloning and sequencing of curA encoding curvacin A, the bacteriocin produced by Lactobacillus curvatus LTH1174. Arch Microbiol 160:279–283
    [Google Scholar]
  45. Tichaczek P. S, Vogel R. F., Hammes W. P. 1994; Cloning and sequencing of sakP encoding sakacin P, the bacteriocin produced by Lactobacillus sake LTH673. Microbiology 140:361–367
    [Google Scholar]
  46. Tomita H, Fujimoto S, Tanimoto K., Yasuyoshi I. 1996; Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI17. J Bacteriol 178:3585–3593
    [Google Scholar]
  47. van de Guchte M, van der Vossen J. M. B. M, Kok J., Venema G. 1989; Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis . Appl Environ Microbiol 55:224–228
    [Google Scholar]
  48. Vaughan A, Eijsink V. G. H, O’Sullivan T. F, O’Hanlon K., van Sinderen D. 2001; An analysis of bacteriocins produced by lactic acid bacteria isolated from malted barley. J Appl Microbiol 91:131–138
    [Google Scholar]
  49. Venema K, Haverkort R. E, Abee T, Haandrikman A. J, Leenhouts K. J, de Leij L, Venema G., Kok J. 1994; Mode of action of LciA, the lactococcin A immunity protein. Mol Microbiol 14:521–532
    [Google Scholar]
  50. Venema K, Kok J, Marugg J. D, Toonen M. Y, Ledeboer A. M, Venema G., Chikindas M. L. 1995; Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1.0: PedB is the immunity protein and PedD is the precursor processing enzyme. Mol Microbiol 17:515–522
    [Google Scholar]
  51. Wang Y, Henz M. E, Fregeau Gallagher N. L, Chai S, Gibbs A. C, Liang Z. Y, Stiles M. E, Wishart D. S., Vederas J. C. 1999; Solution structure of carnobacteriocin B2 and implications for structure–activity relationships among type IIa bacteriocins from lactic acid bacteria. Biochemistry 38:15438–15447
    [Google Scholar]
  52. Watson R. M, Woody R. W, Lewis R. V, Bohle D. S, Andreotti A. H, Ray B., Miller K. W. 2001; Conformational changes in pediocin AcH upon vesicle binding and approximation of the membrane-bound structure in detergent micelles. Biochemistry 40:14037–14046
    [Google Scholar]
  53. Yan L. Z, Gibbs A. C, Stiles M. E, Wishart D. S., Vederas J. C. 2000; Analogues of bacteriocins: antimicrobial specificity and interactions of leucocin A with its enantiomer, carnobacteriocin B2, and truncated derivatives. J Med Chem 43:4579–4581
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3661
Loading
/content/journal/micro/10.1099/00221287-148-11-3661
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error