1887

Abstract

Total genomic DNA from samples of intact mouse small intestine, large intestine, caecum and faeces was used as template for PCR amplification of 16S rRNA gene sequences with conserved bacterial primers. Phylogenetic analysis of the amplification products revealed 40 unique 16S rDNA sequences. Of these sequences, 25% (10/40) corresponded to described intestinal organisms of the mouse, including spp., spp., segmented filamentous bacteria and members of the altered Schaedler flora (ASF360, ASF361, ASF502 and ASF519); 75% (30/40) represented novel sequences. A large number (11/40) of the novel sequences revealed a new operational taxonomic unit (OTU) belonging to the phylum, which the authors named ‘mouse intestinal bacteria’. 16S rRNA probes were developed for this new OTU. Upon analysis of the novel sequences, eight were found to cluster within the group and three clustered within the group. One of the novel sequences was distantly related to and one was distantly related to . Oligonucleotide probes specific for the 16S rRNA of these novel clones were generated. Using a combination of four previously described and four newly designed probes, approximately 80% of bacteria recovered from the murine large intestine and 71% of bacteria recovered from the murine caecum could be identified by fluorescence hybridization (FISH).

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3651
2002-11-01
2019-09-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483651a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3651&mimeType=html&fmt=ahah

References

  1. Alm, E. W., Oerther, D. B., Larsen, N., Stahl, D. A. & Raskin, L. ( 1996; ). The oligonucleotide probe database. Appl Environ Microbiol 62, 3557-3559.
    [Google Scholar]
  2. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R. & Stahl, D. A. ( 1990; ). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 1919-1925.
    [Google Scholar]
  3. Amann, R., Springer, N., Ludwig, W., Gortz, H. D. & Schleifer, K.-H. ( 1991; ). Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature 351, 161-164.[CrossRef]
    [Google Scholar]
  4. Amann, R. I., Ludwig, W. & Schleifer, K.-H. ( 1995; ). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143-169.
    [Google Scholar]
  5. Cebra, J. J., Jiang, H. Q., Sterzl, J. & Tlaskalova-Hogenova, H. ( 1999; ). The role of mucosal microbiota in the development and maintenance of the mucosal immune system. In Mucosal Immunology , pp. 267-279. Edited by J. Mestecky. New York:Academic Press.
  6. Dewhirst, F. E., Chien, C. C., Paster, B. J., Ericson, R. L., Orcutt, R. P., Schauer, D. B. & Fox, J. G. ( 1999; ). Phylogeny of the defined murine microbiota: altered Schaedler flora. Appl Environ Microbiol 65, 3287-3292.
    [Google Scholar]
  7. Dubos, R., Schaedler, R. W., Costello, R. & Hoet, P. ( 1965; ). Indigenous, normal, and autochthonous flora of the gastrointestinal tract. J Exp Med 122, 67-76.[CrossRef]
    [Google Scholar]
  8. Eyssen, H. J., De Pauw, G. & Van Eldere, J. ( 1999; ). Formation of hyodeoxycholic acid from muricholic acid and hyocholic acid by an unidentified gram-positive rod termed HDCA-1 isolated from rat intestinal microflora. Appl Environ Microbiol 65, 3158-3163.
    [Google Scholar]
  9. Fox, J. G., Gorelick, P. L., Kullberg, M. C., Ge, Z., Dewhirst, F. E. & Ward, J. M. ( 1999; ). A novel urease-negative Helicobacter species associated with colitis and typhlitis in IL-10-deficient mice. Infect Immun 67, 1757-1762.
    [Google Scholar]
  10. Franks, A. H., Harmsen, H. J. M., Raangs, G. C., Jansen, G. J., Schut, F. & Welling, G. W. ( 1998; ). Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64, 3336-3345.
    [Google Scholar]
  11. Giovannoni, S. J., DeLong, E. F., Olsen, G. J. & Pace, N. R. ( 1988; ). Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 170, 720-726.
    [Google Scholar]
  12. Goldin, G. R. & Gorback, S. L. ( 1992; ). Probiotics for humans. In Probiotics: the Scientific Basis , pp. 355-376. Edited by R. Fuller. London:Chapman Hall.
  13. Harmsen, H. J. M., Elfferich, P., Schut, F. & Welling, G. W. ( 1999; ). A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridization. Microb Ecol Health Dis 11, 3-12.[CrossRef]
    [Google Scholar]
  14. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. ( 1993; ). Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263-274.[CrossRef]
    [Google Scholar]
  15. Langendijk, P. S., Schut, F., Jansen, G. J., Raangs, G. C., Kamphuis, G. R., Wilkinson, M. H. & Welling, G. W. ( 1995; ). Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61, 3069-3075.
    [Google Scholar]
  16. Ludwig, W., Strunk, O., Klugbauer, S., Klugbauer, N., Weizenegger, M., Neumaier, J., Bachleitner, M. & Schleifer, K.-H. ( 1998; ). Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554-568.[CrossRef]
    [Google Scholar]
  17. Maidak, B. L., Cole, J. R., Lilburn, T. G. & 7 other authors ( 2001; ). The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef]
    [Google Scholar]
  18. Manz, W., Amann, R., Ludwig, W., Vancanneyt, M. & Schleiffer, K.-H. ( 1996; ). Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142, 1097-1106.[CrossRef]
    [Google Scholar]
  19. McCartney, A. L., Wenzhi, W. & Tannock, G. W. ( 1996; ). Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans. Appl Environ Microbiol 62, 4608-4613.
    [Google Scholar]
  20. Miyamoto, Y. & Itoh, K. ( 2000; ). Bacteroides acidifaciens sp. nov., isolated from the caecum of mice. Int J Syst Evol Microbiol 50, 145-148.[CrossRef]
    [Google Scholar]
  21. Sadlack, B., Merz, H., Schorle, H., Schimpl, A., Feller, A. C. & Horak, I. ( 1993; ). Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75, 253-261.[CrossRef]
    [Google Scholar]
  22. Savage, D. C. ( 1977; ). Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31, 107-133.[CrossRef]
    [Google Scholar]
  23. Schaedler, R. W., Dubos, R. & Costello, R. ( 1965; ). The development of the bacterial flora in the gastrointestinal tract of mice. J Exp Med 122, 59-66.[CrossRef]
    [Google Scholar]
  24. Snel, J., Blok, H. J., Kengen, H. M. P., Ludwig, W., Poelma, F. G. J., Koopman, J. P. & Akkermans, A. D. L. ( 1994; ). Phylogenetic characterization of Clostridium-related segmented filamentous bacteria in mice based on 16S ribosomal RNA analysis. Syst Appl Microbiol 17, 172-179.[CrossRef]
    [Google Scholar]
  25. Snel, J., Heinen, P. P., Blok, H. J., Carman, R. J., Duncan, A. J., Allen, P. C. & Collins, M. D. ( 1995; ). Comparison of 16S rRNA sequences of segmented filamentous bacteria isolated from mice, rats, and chickens and proposal of ‘Candidatus Arthromitus’. Int J Syst Bacteriol 45, 780-782.[CrossRef]
    [Google Scholar]
  26. Snel, J., Hermsen, C. C., Smits, H. J., Bos, N. A., Eling, W. M. C., Cebra, J. J. & Heidt, P. J. ( 1998; ). Interactions between gut-associated lymphoid tissue and colonization levels of indigenous, segmented, filamentous bacteria in the small intestine of mice. Can J Microbiol 44, 1177-1182.[CrossRef]
    [Google Scholar]
  27. Suau, A., Bonnet, R., Sutren, M., Godon, J. J., Gibson, G. R., Collins, M. D. & Dore, J. ( 1999; ). Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65, 4799-4807.
    [Google Scholar]
  28. Summanen, P., Baron, E. J., Citron, D. M., Strong, C. A., Wexler, H. M. & Finegold, S. M. (1993). Wadsworth Anaerobic Bacteriology Manual, 5th edn. Belmont, CA: Star Publishing.
  29. Talham, G. L., Jiang, H. Q., Bos, N. A. & Cebra, J. J. ( 1999; ). Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect Immun 67, 1992-2000.
    [Google Scholar]
  30. van der Waaij, D. ( 1989; ). The ecology of the human intestine and its consequences for overgrowth by pathogens such as Clostridium difficile. Annu Rev Microbiol 43, 69-87.[CrossRef]
    [Google Scholar]
  31. Ward, D. M., Weller, R. & Bateson, M. M. ( 1990; ). 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345, 63-65.[CrossRef]
    [Google Scholar]
  32. Wilson, K. H. & Blitchington, R. B. ( 1996; ). Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 62, 2273-2278.
    [Google Scholar]
  33. Yamamoto, T., Morotomi, M. & Tanaka, R. ( 1992; ). Species-specific oligonucleotide probe for five Bifidobacterium species detected in human intestinal microflora. Appl Environ Microbiol 58, 4076-4079.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3651
Loading
/content/journal/micro/10.1099/00221287-148-11-3651
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error