A new regulatory DNA motif of the gamma subclass : identification of the LexA protein binding site of the plant pathogen Free

Abstract

LexA protein is the repressor of a gene network whose members are directly involved in the repair of damaged DNA and in the survival of bacterial cells until DNA lesions have been eliminated. The gene is widely present in bacteria, although the sequences of only three LexA-binding sites are known: Gram-positive, alpha and some members of gamma represented by . Taking advantage of the fact that the genome sequence of the plant-pathogenic bacterium has been determined, its gene has been cloned and overexpressed in to purify its product. After demonstration that and genes are co-transcribed, gel mobility shift assays and directed mutagenesis experiments using the promoter of the transcriptional unit demonstrated that the LexA protein specifically binds the imperfect palindrome TTAGNTACTA. This is the first LexA binding sequence identified in the gamma differing from the -like LexA box. Although a computational search has revealed the presence of TTAGNTACTA-like motifs upstream of genes other than , LexA only binds the promoter of one of them, XF2313, encoding a putative DNA-modification methylase. Moreover, LexA protein does not bind any of the other genes whose homologues are regulated by the LexA repressor in (, , , , , , and ). RT-PCR quantitative analysis has also demonstrated that and XF2313 genes, as well as the genes which are homologues to those of belonging to the LexA regulon, with the exception of , are DNA damage-inducible in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3583
2002-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483583a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3583&mimeType=html&fmt=ahah

References

  1. Bertrand-Burggraf E, Hurstel S, Daune M., Schnarr M. 1987; Promoter properties and negative regulation of the uvrA gene by the LexA repressor and its amino-terminal binding domain. J Mol Biol 193:293–302
    [Google Scholar]
  2. Bradford M. M. 1976; A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  3. Brent R., Ptashne M. 1981; Mechanism of action of the lexA gene product. Proc Natl Acad Sci USA 78:4204–4208
    [Google Scholar]
  4. Brooks P. C, Movahedzadeh F., Davis E. O. 2001; Identification of some DNA damage-inducible genes of Mycobacterium tuberculosis : apparent lack of correlation with LexA binding. J Bacteriol 183:4459–4467
    [Google Scholar]
  5. Cole S. T, Brosch R, Parkhill J. 36 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544
    [Google Scholar]
  6. Courcelle J, Khodursky A, Peter B, Brown P. O., Hanawalt P. C. 2001; Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli . Genetics 158:41–64
    [Google Scholar]
  7. Davis J. M, French W. J., Schaad N. 1981; Axenic culture of the bacteria associated with phony disease of peach and plum leaf scald. Curr Microbiol 6:309–314
    [Google Scholar]
  8. Davis E. O, Dullaghan E. M., Rand L. 2002; Definition of the Mycobacterial SOS box and use to identify LexA-regulated genes in Mycobacterium tuberculosis . J Bacteriol 184:3287–3295
    [Google Scholar]
  9. Devereux J, Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  10. Eisen J. A., Hanawalt P. C. 1999; A phylogenomic study of DNA repair genes, proteins, and processes. Mutat Res 435:171–213
    [Google Scholar]
  11. Fernandez de Henestrosa A. R, Rivera E, Tapias A., Barbé J. 1998; Identification of the Rhodobacter sphaeroides SOS box. Mol Microbiol 28:991–1003
    [Google Scholar]
  12. Fernandez de Henestrosa A. R, Ogi T, Aoyagi S, Chafin D, Hayes J. J, Ohmori H., Woodgate R. 2000; Identification of additional genes belonging to the LexA regulon in Escherichia coli . Mol Microbiol 35:1560–1572
    [Google Scholar]
  13. Griffith K. L., Wolf R. E. 2001; Systematic mutagenesis of the DNA binding sites for SoxS in the Escherichia coli zwf and fpr promoters: identifying nucleotides required for DNA binding and transcription activation. Mol Microbiol 40:1141–1154
    [Google Scholar]
  14. Khil P. P., Camerini-Otero R. D. 2002; Over 1000 genes are involved in the DNA damage response of Escherichia coli . Mol Microbiol 44:89–105
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  16. Little J. W. 1991; Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie 73:411–422
    [Google Scholar]
  17. Little J. W, Mount D., Yanisch-Perron C. R. 1981; Purified LexA protein is a repressor of the recA and lexA genes. Proc Natl Acad Sci USA 78:4199–4203
    [Google Scholar]
  18. Luo Y, Pfuetzner R. A, Mosimann S, Paetzel M, Frey E. A, Cherney M, Kim B, Little J. W., Strynadka C. J. 2001; Crystal structure of LexA: a conformational switch for regulation of self-cleavage. Cell 106:585–594
    [Google Scholar]
  19. Makarova K. S, Mironov A. A., Gelfand M. S. 2001; Conservation of the binding site for the arginine repressor in all bacterial lineages. Genome Biol 2:131–138
    [Google Scholar]
  20. Monteiro P. B, Teixeira D. C, Palma R. R, Garnier M, Bové J. M., Renaudin J. 2001; Stable transformation of the Xylella fastidiosa citrus variegated chlorosis strain with oriC plasmids. Appl Environ Microbiol 67:2263–2269
    [Google Scholar]
  21. Panina E. M, Mironov A. A., Gelfand M. S. 2001; Comparative analysis of Fur regulons in Gamma-proteobacteria. Nucleic Acids Res 29:5195–5206
    [Google Scholar]
  22. Rivera E, Vila L., Barbé J. 1996; The uvrB gene of Pseudomonas aeruginosa is not DNA damage inducible. J Bacteriol 178:5550–5554
    [Google Scholar]
  23. Rivera E, Vila L., Barbé J. 1997; Expression of the Pseudomonas aeruginosa uvrA gene is constitutive. Mutat Res 377:149–155
    [Google Scholar]
  24. Rodionov D. A, Mironov A. M., Gelfand M. S. 2001; Transcriptional regulation of pentose utilisation systems in the Bacillus/Clostridium group of bacteria. FEMS Microbiol Lett 205:305–314
    [Google Scholar]
  25. Roy S, Sahu A., Adhya S. 2002; Evolution of DNA binding motifs and operators. Gene 285:169–173
    [Google Scholar]
  26. Sambrook J, Fritsch E. F., Maniatis T. 1992 Molecular Cloning. A Laboratory Manual,, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Sanger F, Nicklen S., Coulson S. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  28. Sassanfar M., Roberts J. W. 1990; Nature of SOS-inducing signal in Escherichia coli : the involvement of DNA replication. J Mol Biol 212:79–96
    [Google Scholar]
  29. Silhavy T. J, Berman M. L., Enquist L. W. 1984 Experiments With Gene Fusions Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Simpson A. J. G, Reinach F. C, Arruda P. 113 other authors 2000; The genome sequence of the plant pathogen Xylella fastidiosa . Nature 406:151–159
    [Google Scholar]
  31. Tan K, Moreno-Hagelsieb G, Collado-Vives J., Stormo G. D. 2001; A comparative genomics approach to prediction of new members of regulons. Genome Res 11:566–584
    [Google Scholar]
  32. Tapias A., Barbé J. 1999; Regulation of divergent transcription from the uvrA-ssb promoters in Sinorhizobium meliloti . Mol Gen Genet 262:121–130
    [Google Scholar]
  33. Tapias A, Fernández S, Alonso J. C., Barbé J. 2002; Rhodobacter sphaeroides LexA has dual activity: optimising and repressing recA gene transcription. Nucleic Acids Res 30:1539–1546
    [Google Scholar]
  34. Voloshin O. N, Ramirez B. E, Bax A., Camerini-Otero R. D. 2001; A model for the abrogation of the SOS response by an SOS protein: a negatively charged helix in DinI mimics DNA in its interaction with RecA. Genes Dev 15:415–427
    [Google Scholar]
  35. Walker G. C. 1984; Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli . Microbiol Rev 48:60–93
    [Google Scholar]
  36. Winterling K. W, Chafin D, Hayes J. J, Sun J, Levine A. S, Yasbin R. E., Woodgate R. 1998; The Bacillus subtilis DinR binding site: redefinition of the consensus sequence. J Bacteriol 180:2201–2211
    [Google Scholar]
  37. Yang Y. C, Yang M. K, Kuo T. T., Tu J. 2001; Structural and functional characterization of the lexA gene of Xanthomonas campestris pathovar citri. Mol Gen Genet 265:316–326
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3583
Loading
/content/journal/micro/10.1099/00221287-148-11-3583
Loading

Data & Media loading...

Most cited Most Cited RSS feed