1887

Abstract

A detailed study on the geographic distribution, molecular diversity and evolutionary relationships of 24 closely related variants of the Tn transposon found among 182 mercury resistant environmental Gram-negative strains from the IMG-Hg Reference Collection is reported here. RFLP analysis, followed by the determination of partial DNA sequences, identified 14 distinct types of these transposons, which differed from each other by 1–7 single-event DNA polymorphisms. No polymorphisms were detected at the right arm of the transposons except an insertion of a new mobile DNA element carrying a operon (named the cassette) within the Tn operon. According to the model presented here, the insertion occurred via homologous recombination with a circular form of the cassette. A total of 8 point mutations, 1 internal deletion, 2 end-involving deletions, 3 mosaic regions and 2 insertions were detected at the left arm of the transposons. The insertions were a transposon closely related to Tn but lacking the integron and a new group II intron (named INT5041C). Inspection of the geographic distribution of the Tn variants suggested that at least three long-distance waves of dissemination of these variants had occurred, accompanied by homologous recombination between different Tn lineages. Movements of circular DNAs by homologous recombination as a source of mosaic genes and new genes, and formation of unusual mosaics ending or beginning at the Tn site are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3569
2002-11-01
2020-12-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483569a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3569&mimeType=html&fmt=ahah

References

  1. Blakely G. W, Davidson A. O., Sherratt D. J. 2000; Sequential strand exchange by XerC and XerD during site-specific recombination at dif . J Biol Chem275:9930–9936
    [Google Scholar]
  2. Bogdanova E. S, Mindlin S. Z, Kalyaeva E. S., Nikiforov V. G. 1988; The diversity of mercury reductases among mercury-resistant bacteria. FEBS Lett234:280–282
    [Google Scholar]
  3. Campbell A. 1994; Comparative molecular biology of lambdoid phages. Annu Rev Microbiol48:193–222
    [Google Scholar]
  4. Cheng K. C., Smith G. R. 1984; Recombinational hotspot activity of Chi-like sequences. J Mol Biol180:371–377
    [Google Scholar]
  5. Dai L., Zimmerly S. 2002; Compilation and analysis of group II intron insertions in bacterial genomes: evidence for retroelement behavior. Nucleic Acids Res30:1091–1102
    [Google Scholar]
  6. Doherty M. J, Morrison P. T., Kolodner R. 1983; Genetic recombination of bacterial plasmid DNA: physical and genetic analysis of the products of plasmid recombination in Escherichia coli . Mol Biol167:539–560
    [Google Scholar]
  7. Eckhardt T. 1978; A rapid method for identification of plasmid deoxyribonucleic acid in bacteria. Plasmid1:584–588
    [Google Scholar]
  8. Ferat J. L., Michel F. 1993; Group II self-splicing introns in bacteria. Nature364:358–361
    [Google Scholar]
  9. Francia M. V, De La Cruz F., Garcia Lobo J. M. 1993; Secondary sites for integration mediated by the Tn 21 integrase. Mol Microbiol10:823–828
    [Google Scholar]
  10. Griffin H. G, Foster T. J, Silver S., Misra K. 1987; Cloning and DNA sequence of the mercuric- and organomercurial-resistance determinants of plasmid pDU1358. Proc Natl Acad Sci USA84:3112–3116
    [Google Scholar]
  11. Grinsted J, De La Cruz F, Altenbuchner J., Schmitt R. 1982; Complementation of transposition of tnpA mutants of Tn 3 , Tn 21 , Tn 501 , and Tn 1721. Plasmid 8:276–286
    [Google Scholar]
  12. Grinsted J, De La Cruz F., Schmitt R. 1990; The Tn 21 subgroup of bacterial transposable elements. Plasmid24:163–189
    [Google Scholar]
  13. Hobman J. L., Brown N. L. 1997; Bacterial mercury resistance genes. In Metal Ions in Biological Systemsvol. 34Mercury and its Effects on Environment and Biology pp527–567 Edited by Sigel A., Sigel H.. New York: Marcel Dekker;
    [Google Scholar]
  14. Hobman J, Kholodii G, Nikiforov V, Ritchie D. A, Strike P., Yurieva O. 1994; The sequence of the mer operon of pMER327/419 and transposon ends of pMER327/419, 330 and 05. Gene146:73–78
    [Google Scholar]
  15. Hõrak R., Kivisaar M. 1999; Regulation of the transposase of Tn 4652 by the transposon-encoded protein TnpC. J Bacteriol181:6312–6318
    [Google Scholar]
  16. Khesin R. B., Karasyova E. V. 1984; Mercury-resistant plasmids in bacteria from a mercury and antimony deposit area. Mol Gen Genet197:280–285
    [Google Scholar]
  17. Kholodii G. 2001; The shuffling function of resolvases. Gene269:121–130
    [Google Scholar]
  18. Kholodii G, Yurieva O, Lomovskaya O, Gorlenko Zh, Mindlin S., Nikiforov V. 1993a; Tn 5053 , a mercury resistance transposon with integron’s ends. J Mol Biol230:1103–1107
    [Google Scholar]
  19. Kholodii G. Ya, Gorlenko Zh. M, Lomovskaya O. L, Mindlin S. Z, Yurieva O. V., Nikiforov V. G. 1993b; Molecular characterization of an aberrant mercury resistance transposable element from an environmental Acinetobacter strain. Plasmid30:303–308
    [Google Scholar]
  20. Kholodii G. Ya, Yurieva O. V, Gorlenko Zh. M, Mindlin S. Z, Bass I. A, Lomovskaya O. L, Kopteva A. V., Nikiforov V. G. 1997; Tn 5041 : a chimeric mercury resistance transposon closely related to the toluene degradative transposon Tn 4651 . Microbiology143:2549–2556
    [Google Scholar]
  21. Kholodii G, Yurieva O, Mindlin S, Gorlenko Zh, Rybochkin V., Nikiforov V. 2000a; Tn 5044 , a novel Tn 3 family transposon coding for temperature sensitive mercury resistance. Res Microbiol151:291–312
    [Google Scholar]
  22. Kholodii G. Ya, Mindlin S. Z, Gorlenko Zh. M, Bass I. A, Kalyaeva E. S., Nikiforov V. G. 2000b; Host-dependent transposition of Tn 5041 . Russ J Genetics36:365–373
    [Google Scholar]
  23. Kiyono M., Pan-Hou H. 1999; The merG gene product is involved in phenylmercury resistance in Pseudomonas strain K-62. J Bacteriol181:726–730
    [Google Scholar]
  24. Kiyono M, Omura T, Inuzuka M, Fujimori H., Pan-Hou H. 1997; Nucleotide sequence and expression of the organomercurial-resistance determinants from a Pseudomonas K-62 plasmid pMR26. Gene189:151–157
    [Google Scholar]
  25. Liebert C. A, Wireman J, Smith T., Summers A. O. 1997; Phylogeny of mercury resistance ( mer) operons of Gram-negative bacteria isolated from the fecal flora of primates. Appl Environ Microbiol63:1066–1076
    [Google Scholar]
  26. Liebert C. A, Hall R. M., Summers A. O. 1999; Transposon Tn 21 , flagship of the floating genome. Microbiol Mol Biol Rev63:507–522
    [Google Scholar]
  27. Liebert C. A, Watson A. L., Summers A. O. 2000; The quality of merC , a module of the mer mosaic. J Mol Evol51:607–622
    [Google Scholar]
  28. Mahillon J., Chandler M. 1998; Insertion sequences. Microbiol Mol Biol Rev62:725–744
    [Google Scholar]
  29. Martı́nez-Abarca F., Toro N. 2000; Group II introns in the bacterial world. Mol Microbiol38:917–926
    [Google Scholar]
  30. Michel F, Umesono K., Ozeki H. 1989; Comparative and functional anatomy of group II catalytic introns – a review. Gene82:5–30
    [Google Scholar]
  31. Mindlin S, Kholodii G, Gorlenko Zh.. 7 other authors 2001; Mercury resistance transposons of gram-negative environmental bacteria and their classification. Res Microbiol152:811–822
    [Google Scholar]
  32. Mohr G, Perlman P. S., Lambowitz A. M. 1993; Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucleic Acids Res21:4991–4997
    [Google Scholar]
  33. Mukhopadhyay D, Yu H. R, Nucifora G., Misra T. K. 1991; Purification and functional characterization of MerD: a coregulator of the mercury resistance operon in gram-negative bacteria. J Biol Chem266:18538–18542
    [Google Scholar]
  34. Osborn A. M, Bruce K. D, Strike P., Ritchie D. A. 1997; Distribution, diversity and evolution of the bacterial mercury resistance ( mer) operon. FEMS Microbiol Rev19:239–262
    [Google Scholar]
  35. Pansegrau W, Lanka E, Barth P. T.. 7 other authors 1994; Complete nucleotide sequence of Birmingham IncPa plasmids: compilation and comparative analysis. J Mol Biol239:623–663
    [Google Scholar]
  36. Partridge S. R, Recchia G. D, Scaramuzzi C, Collis C. M, Stokes H. W., Hall R. M. 2000; Definition of the attI1 site of class 1 integrons. Microbiology146:2855–2864
    [Google Scholar]
  37. Partridge S. R, Brown H. J, Stokes H. W., Hall R. M. 2001; Transposons Tn 1696 and Tn 21 and their integrons In4 and In2 have independent origins. Antimicrob Agents Chemother45:1263–1270
    [Google Scholar]
  38. Recchia G. D, Stokes H. W., Hall R. M. 1994; Characterisation of specific and secondary recombination sites recognised by the integron DNA integrase. Nucleic Acids Res22:2071–2078
    [Google Scholar]
  39. Rossignol J. L, Nicolas A, Hamza H., Langin T. 1984; Origins of gene conversion reciprocal exchange in Ascobolus . Cold Spring Harbor Symp Quant Biol49:13–21
    [Google Scholar]
  40. Sambrook J, Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Sanger F, Nicklen S., Coulson A. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA74:5463–5467
    [Google Scholar]
  42. Smith G. R. 1994; Hotspots of homologous recombination. Experientia50:234–241
    [Google Scholar]
  43. Stokes H. W, O’Gorman D. B, Recchia G. D, Parsekhian M., Hall R. M. 1997; Structure and function of 59-base element recombination sites associated with mobile gene cassettes. Mol Microbiol26:731–745
    [Google Scholar]
  44. Watson N. 1988; A new revision of the sequence of plasmid pBR322. Gene70:399–403
    [Google Scholar]
  45. Willems R. J, Top J, van den Braak N, van Belkum A, Mevius D. J, Hendriks G, van Santen-Verheuvel M., van Embden J. D. A. 1999; Molecular diversity and evolutionary relationships of Tn 1546 -like elements in enterococci from humans and animals. Antimicrob Agents Chemother43:483–491
    [Google Scholar]
  46. Wilson J. R, Leang C, Morby A. P, Hobman J. L., Brown N. L. 2000; MerF is a mercury transport protein: different structures but a common mechanism for mercuric ion transporters?. FEBS Lett472:78–82
    [Google Scholar]
  47. Xiong Y., Eickbush T. H. 1990; Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J9:3353–3362
    [Google Scholar]
  48. Yanisch-Perron C, Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119
    [Google Scholar]
  49. Yeo C. C, Tham J. M, Yap M. W., Poh C. L. 1997; Group II intron from Pseudomonas alcaligenes NCIB 9867 (P25X): entrapment in plasmid RP4 and sequence analysis. Microbiology143:2833–2840
    [Google Scholar]
  50. Yurieva O, Kholodii G, Minakhin L, Gorlenko Zh, Kalyaeva E, Mindlin S., Nikiforov V. 1997; Intercontinental spread of promiscuous mercury resistance transposons in environmental bacteria. Mol Microbiol24:321–329
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3569
Loading
/content/journal/micro/10.1099/00221287-148-11-3569
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error