1887

Abstract

GTP-binding proteins are found in all domains of life and are involved in various essential cellular processes. With the recent explosion of available genome sequence data, a widely distributed bacterial subfamily of GTP-binding proteins was discovered, represented by the Era and the Obg proteins. Although only a limited number of theGTP-binding proteins belonging to the subfamily have been experimentally characterized, and their function remains unknown, the available data suggests that many of them are essential to bacterial growth. When the complete genomic sequence of was surveyed for genes encoding GTP-binding proteins of the Era/Obg family, nine such genes were identified. As a first step in elucidating the functional networks of those nine GTP-binding proteins, data presented here indicates that six of them are essential for viability. Additionally, it is shown that the six essential proteins are able to specifically bind GTP and GDP . Experimental depletion of the essential GTP-binding proteins was examined in the context of cell morphology and chromosome replication, and it was found that two proteins, Bex and YqeH, appeared to participate in the regulation of initiation of chromosome replication. Collectively, these results suggest that members of the GTP-binding Era/Obg family are important proteins with precise, yet still not fully understood, roles in bacterial growth and viability.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3539
2002-11-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483539a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3539&mimeType=html&fmt=ahah

References

  1. Ahnn, J., March, P. E., Takiff, H. E. & Inouye, M. ( 1986; ). A GTP-binding protein of Escherichia coli has homology to yeast RAS proteins. Proc Natl Acad Sci USA 83, 8849-8853.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402.[CrossRef]
    [Google Scholar]
  3. Anderson, P. E., Matsunaga, J., Simons, E. L. & Simons, R. W. ( 1996; ). Structure and regulation of the Salmonella typhimurium rnc-era-recO operon. Biochimie 78, 1025-1034.[CrossRef]
    [Google Scholar]
  4. Arigoni, F., Talabot, F., Peitsch, M. & 7 other authors ( 1998; ). Genome-based approach for the identification of essential bacterial genes. Nat Biotechnol 16, 851–856.[CrossRef]
    [Google Scholar]
  5. Atlung, T. & Hansen, F. G. ( 1993; ). Three distinct chromosome replication states are induced by increasing concentrations of DnaA protein in Escherichia coli. J Bacteriol 175, 6537-6545.
    [Google Scholar]
  6. Bourne, H. R., Sanders, D. A. & McCormick, F. ( 1990; ). The GTPase superfamily: a conserved switch of diverse cell function. Nature 348, 125-132.[CrossRef]
    [Google Scholar]
  7. Bourne, H. R., Sanders, D. A. & McCormick, F. ( 1991; ). The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117-127.[CrossRef]
    [Google Scholar]
  8. Britton, R. A. & Lupski, J. R. ( 1997; ). Isolation and characterization of suppressors of two Escherichia coli dnaG mutations, dnaG2903 and parB. Genetics 145, 867-875.
    [Google Scholar]
  9. Britton, R. A., Powell, B. S., Court, D. L. & Lupski, J. R. ( 1997; ). Characterization of mutations affecting the Escherichia coli essential GTPase era that suppress two temperature-sensitive dnaG alleles. J Bacteriol 179, 4575-4582.
    [Google Scholar]
  10. Britton, R. A., Powell, B. S., Dasgupta, S., Sun, Q., Margolin, W., Lupski, J. R. & Court, D. L. ( 1998; ). Cell cycle arrest in Era GTPase mutants: a potential growth rate-regulated checkpoint in Escherichia coli. Mol Microbiol 27, 739-750.[CrossRef]
    [Google Scholar]
  11. Bruckner, R. ( 1992; ). A series of shuttle vectors for Bacillus subtilis and Escherichia coli. Gene 122, 187-192.[CrossRef]
    [Google Scholar]
  12. Burton, K. ( 1956; ). A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of DNA. Biochem J 62, 315-323.
    [Google Scholar]
  13. Cabedo, H., Macian, F., Villarroya, M., Escudero, J. C., Martinez-Vicente, M., Knecht, E. & Armengod, M. E. ( 1999; ). The Escherichia coli trmE (mnmE) gene, involved in tRNA modification, codes for an evolutionarily conserved GTPase with unusual biochemical properties. EMBO J 18, 7063-7076.[CrossRef]
    [Google Scholar]
  14. Caldon, C. E., Yoong, P. & March, P. E. ( 2001; ). Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function. Mol Microbiol 41, 289-297.[CrossRef]
    [Google Scholar]
  15. Dassain, M., Leroy, A., Colosetti, L., Carole, S. & Bouche, J. P. ( 1999; ). A new essential gene of the ’minimal genome’ affecting cell division. Biochimie 81, 889-895.[CrossRef]
    [Google Scholar]
  16. Devitt, M. L., Maas, K. J. & Stafstrom, J. P. ( 1999; ). Characterization of DRGs, developmentally regulated GTP-binding proteins, from pea and Arabidopsis. Plant Mol Biol 39, 75-82.[CrossRef]
    [Google Scholar]
  17. Gollop, N. & March, P. E. ( 1991; ). A GTP-binding protein (Era) has an essential role in growth rate and cell cycle control in Escherichia coli. J Bacteriol 173, 2265-2270.
    [Google Scholar]
  18. Hassan, A. K., Moriya, S., Ogura, M., Tanaka, T., Kawamura, F. & Ogasawara, N. ( 1997; ). Suppression of initiation defects of chromosome replication in Bacillus subtilis dnaA and oriC-deleted mutants by integration of a plasmid replicon into the chromosomes. J Bacteriol 179, 2494-2502.
    [Google Scholar]
  19. Herbert, D., Phipps, P. J. & Strange, R. E. ( 1971; ). Chemical analysis of microbial cells. In Methods in Microbiology , pp. 324-328. Edited by J. R. Norris & D. W. Ribbons. London:Academic Press.
  20. Itaya, M. ( 1992; ). First evidence for homologous recombination-mediated large DNA inversion on the Bacillus subtilis 168 chromosome. Biosci Biotechnol Biochem 58, 1836-1841.
    [Google Scholar]
  21. Kadoya, S., Hassan, A. K., Kasahara, Y., Ogasawara, N. & Moriya, S. ( 2002; ). Two separate DNA sequences within oriC participate in accurate chromosome segregation in Bacillus subtilis. Mol Microbiol 45, 73-87.[CrossRef]
    [Google Scholar]
  22. Katayama, T., Kubota, T., Kurokawa, K., Crooke, E. & Sekimizu, K. ( 1998; ). The initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. coli chromosomal replicase. Cell 94, 61-71.[CrossRef]
    [Google Scholar]
  23. Kato, J. & Katayama, T. ( 2001; ). Hda, a novel DnaA-related protein, regulates the replication cycle in Escherichia coli. EMBO J 20, 4253-4262.[CrossRef]
    [Google Scholar]
  24. Kjeldgaard, M., Nyborg, J. & Clark, B. F. ( 1996; ). The GTP binding motif: variations on a theme. FASEB J 10, 1347-1368.
    [Google Scholar]
  25. Kobayashi, G., Moriya, S. & Wada, C. ( 2001; ). Deficiency of essential GTP-binding protein ObgE in Escherichia coli inhibits chromosome partition. Mol Microbiol 41, 1037-1051.
    [Google Scholar]
  26. Kok, J., Trach, K. A. & Hoch, J. A. ( 1994; ). Effects on Bacillus subtilis of a conditional lethal mutation in the essential GTP-binding protein Obg. J Bacteriol 176, 7155-7160.
    [Google Scholar]
  27. LeDeaux, J. R. & Grossman, A. D. ( 1995; ). Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis. J Bacteriol 177, 166-175.
    [Google Scholar]
  28. Lin, B., Covalle, K. L. & Maddock, J. R. ( 1999; ). The Caulobacter crescentus CgtA protein displays unusual guanine nucleotide binding and exchange properties. J Bacteriol 181, 5825-5832.
    [Google Scholar]
  29. Løbner-Olesen, A., Skarstad, K., Hansen, F. G., von Meyenburg, K. & Boye, E. ( 1989; ). The DnaA protein determines the initiation mass of Escherichia coli K-12. Cell 57, 881-889.[CrossRef]
    [Google Scholar]
  30. Lu, M., Campbell, J. L., Boye, E. & Kleckner, N. ( 1994; ). SeqA: a negative modulator of replication initiation in E. coli. Cell 77, 413-426.[CrossRef]
    [Google Scholar]
  31. Maddock, J., Bhatt, A., Koch, M. & Skidmore, J. ( 1997; ). Identification of an essential Caulobacter crescentus gene encoding a member of the Obg family of GTP-binding proteins. J Bacteriol 179, 6426-6431.
    [Google Scholar]
  32. March, P. E., Lerner, C. G., Ahnn, J., Cui, X. & Inouye, M. ( 1988; ). The Escherichia coli Ras-like protein (Era) has GTPase activity and is essential for cell growth. Oncogene 2, 539-544.
    [Google Scholar]
  33. Mehr, I. J., Long, C. D., Serkin, C. D. & Seifert, H. S. ( 2000; ). A homologue of the recombination-dependent growth gene, rdgC, is involved in gonococcal pilin antigenic variation. Genetics 154, 523-532.
    [Google Scholar]
  34. Meier, T. I., Peery, R. B., Jaskunas, S. R. & Zhao, G. ( 1999; ). 16S rRNA is bound to Era of Streptococcus pneumoniae. J Bacteriol 181, 5242-5249.
    [Google Scholar]
  35. Moriya, S., Kato, K., Yoshikawa, H. & Ogasawara, N. ( 1990; ). Isolation of a dnaA mutant of Bacillus subtilis defective in initiation of replication: amount of DnaA protein determines cells’ initiation potential. EMBO J 9, 2905-2910.
    [Google Scholar]
  36. Moriya, S., Tsujikawa, E., Hassan, A. K., Asai, K., Kodama, T. & Ogasawara, N. ( 1998; ). A Bacillus subtilis gene encoding protein homologous to eukaryotic SMC motor protein is necessary for chromosome partition. Mol Microbiol 29, 179-187.[CrossRef]
    [Google Scholar]
  37. Nanamiya, H., Ohashi, Y., Asai, K., Moriya, S., Ogasawara, N., Fujita, M., Sadaie, Y. & Kawamura, F. ( 1998; ). ClpC regulates the fate of a sporulation initiation sigma factor, σH protein, in Bacillus subtilis at elevated temperatures. Mol Microbiol 29, 505-513.[CrossRef]
    [Google Scholar]
  38. Oehler, S., Amouyal, M., Kolkhof, P., von Wilcken-Bergmann, B. & Muller-Hill, B. ( 1994; ). Quality and position of the three lac operators of E. coli define efficiency of repression. EMBO J 13, 3348-3355.
    [Google Scholar]
  39. Ogasawara, N. ( 2001; ). Systematic function analysis of Bacillus subtilis genes. Res Microbiol 151, 129-134.
    [Google Scholar]
  40. Ogura, Y., Imai, Y., Ogasawara, N. & Moriya, S. ( 2001; ). Autoregulation of the dnaA-dnaN operon and effects of DnaA protein levels on replication initiation in Bacillus subtilis. J Bacteriol 183, 3833-3841.[CrossRef]
    [Google Scholar]
  41. Okamoto, S. & Ochi, K. ( 1998; ). An essential GTP-binding protein functions as a regulator for differentiation in Streptomyces coelicolor. Mol Microbiol 30, 107-119.[CrossRef]
    [Google Scholar]
  42. Okamoto, S., Itoh, M. & Ochi, K. ( 1997; ). Molecular cloning and characterization of the obg gene of Streptomyces griseus in relation to the onset of morphological differentiation. J Bacteriol 179, 170-179.
    [Google Scholar]
  43. Onogi, T., Niki, H., Yamazoe, M. & Hiraga, S. ( 1999; ). The assembly and migration of SeqA-Gfp fusion in living cells of Escherichia coli. Mol Microbiol 31, 1775-1782.[CrossRef]
    [Google Scholar]
  44. Powers, T. & Walter, P. ( 1995; ). Reciprocal stimulation of GTP hydrolysis by two directly interacting GTPases. Science 269, 1422-1424.[CrossRef]
    [Google Scholar]
  45. Pragai, Z. & Harwood, C. R. ( 2000; ). YsxC, a putative GTP-binding protein essential for growth of Bacillus subtilis 168. J Bacteriol 182, 6819-6823.[CrossRef]
    [Google Scholar]
  46. Sato, T., Wu, J. & Kuramitsu, H. ( 1998; ). The sgp gene modulates stress responses of Streptococcus mutans: utilization of an antisense RNA strategy to investigate essential gene functions. FEMS Microbiol Lett 159, 241-245.[CrossRef]
    [Google Scholar]
  47. Sayed, A., Matsuyama, S. & Inouye, M. ( 1999; ). Era, an essential Escherichia coli small G-protein, binds to the 30S ribosomal subunit. Biochem Biophys Res Commun 264, 51-54.[CrossRef]
    [Google Scholar]
  48. Sazuka, T., Tomooka, Y., Ikawa, Y., Noda, M. & Kumar, S. ( 1992; ). DRG: a novel developmentally regulated GTP-binding protein. Biochem Biophys Res Commun 189, 363-370.[CrossRef]
    [Google Scholar]
  49. Schenker, T., Lach, C., Kessler, B., Calderara, S. & Trueb, B. ( 1994; ). A novel GTP-binding protein which is selectively repressed in SV40 transformed fibroblasts. J Biol Chem 269, 25447-25453.
    [Google Scholar]
  50. Scott, J. M. & Haldenwang, W. G. ( 1999; ). Obg, an essential GTP binding protein of Bacillus subtilis, is necessary for stress activation of transcription factor σB. J Bacteriol 181, 4653-4660.
    [Google Scholar]
  51. Scott, J. M., Ju, J., Mitchell, T. & Haldenwang, W. G. ( 2000; ). The Bacillus subtilis GTP binding protein Obg and regulators of the σB stress response transcription factor cofractionate with ribosomes. J Bacteriol 182, 2771-2777.[CrossRef]
    [Google Scholar]
  52. Sommer, K. A., Petersen, G. & Bautz, E. K. ( 1994; ). The gene upstream of DmRP128 codes for a novel GTP-binding protein of Drosophila melanogaster. Mol Gen Genet 242, 391-398.
    [Google Scholar]
  53. Sprang, S. R. ( 1997; ). G-protein mechanism: insights from structural analysis. Annu Rev Biochem 66, 639-678.[CrossRef]
    [Google Scholar]
  54. Sullivan, S. M., Mishra, R., Neubig, R. R. & Maddock, J. R. ( 2000; ). Analysis of guanine nucleotide binding and exchange kinetics of the Escherichia coli GTPase Era. J Bacteriol 182, 3460-3466.[CrossRef]
    [Google Scholar]
  55. Takiff, H. E., Chen, S. M. & Court, D. L. ( 1989; ). Genetic analysis of the rnc operon of Escherichia coli. J Bacteriol 171, 2581-2590.
    [Google Scholar]
  56. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680.[CrossRef]
    [Google Scholar]
  57. Trach, K. & Hoch, J. A. ( 1989; ). The Bacillus subtilis spo0B stage 0 sporulation operon encodes an essential GTP-binding protein. J Bacteriol 172, 1362-1371.
    [Google Scholar]
  58. Vagner, V., Dervyn, E. & Ehrlich, S. D. ( 1998; ). A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144, 3097-3104.[CrossRef]
    [Google Scholar]
  59. Vidwans, S. J., Ireton, K. & Grossman, A. D. ( 1995; ). Possible role for the essential GTP-binding protein Obg in regulating the initiation of sporulation in Bacillus subtilis. J Bacteriol 177, 3308-3311.
    [Google Scholar]
  60. Welsh, K. M., Trach, K. A., Folger, C. & Hoch, J. A. ( 1994; ). Biochemical characterization of the essential GTP-binding protein Obg of Bacillus subtilis. J Bacteriol 176, 7161-7168.
    [Google Scholar]
  61. Yamanaka, K., Hwang, J. & Inouye, M. ( 2000; ). Characterization of GTPase activity of TrmE, a member of a novel GTPase superfamily, from Thermotoga maritima. J Bacteriol 182, 7078-7082.[CrossRef]
    [Google Scholar]
  62. Zuber, M., Hoover, T. A., Dertzbaugh, M. T. & Court, D. L. ( 1997; ). A Francisella tularensis DNA clone complements Escherichia coli defective for the production of Era, an essential Ras-like GTP-binding protein. Gene 189, 31-34.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3539
Loading
/content/journal/micro/10.1099/00221287-148-11-3539
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error