1887

Abstract

To determine the function of the gene in the biosynthesis of the inner-core LPS of , a non-polar mutant has been constructed. Data obtained from the comparative chemical analysis of LPS samples obtained from the wild-type, the mutant strain and the complemented mutant demonstrated that the gene is involved in substitution of α-L--D--heptopyranose I (L,D-HepI) at the O-4 position by a β-D-glucopyranose (β-D-Glc) residue. In addition, DNA amplification and nucleotide sequence determination studies revealed that homologues located between the and genes are present in clinical isolates of containing the structure β-D-Glc-(1→4)-α-L,D-HepI (, and ), as well as in strains of and of unknown LPS-core structures. Complementation studies using non-polar mutants prove that all the homologues perform the same function. Furthermore, , and non-polar mutants showed reduced adhesion and pathogenicity. In addition, the and mutants showed reduced swarming motility and ability to form biofilms . All these characteristics were rescued by reintroduction of the gene independently of its origin. An easy DNA amplification method to detect this gene was established, which also helps in finding the potential presence of this structural feature [β-D-Glc-(1→4)-α-L,D-HepI] in the inner-core LPS of members with unknown LPS-core structures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3485
2002-11-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483485a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3485&mimeType=html&fmt=ahah

References

  1. Allen, A. G. & Maskell, D. J. ( 1996; ). The identification, cloning and mutagenesis of a genetic locus required for lipopolysaccharide biosynthesis in Bordetella pertussis. Mol Microbiol 19, 37-52.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403-410.[CrossRef]
    [Google Scholar]
  3. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402.[CrossRef]
    [Google Scholar]
  4. Camprubı́, S., Merino, S. & Tomás, J. M. ( 1993; ). The role of the O-antigen lipopolysaccharide and capsule on an experimental Klebsiella pneumoniae infection of the rat urinary tract. FEMS Microbiol Lett 111, 9-14.[CrossRef]
    [Google Scholar]
  5. Ciucanu, I. & Kerek, F. ( 1984; ). A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131, 209-217.[CrossRef]
    [Google Scholar]
  6. Falkowski, W., Edwards, M. & Schaeffer, A. J. ( 1986; ). Inhibitory effect of substituted aromatic hydrocarbons on adherence of E. coli to human epithelial cells. Infect Immun 52, 863-866.
    [Google Scholar]
  7. Figueroa, J. E. & Densen, P. ( 1991; ). Infectious diseases associated with complement deficiencies. Clin Microbiol Rev 4, 359-395.
    [Google Scholar]
  8. Filiatrault, M. J., Gibson, B. G., Schilling, B., Sun, S., Munson, R. S. & Campagnari, A. A. ( 2000; ). Construction and characterization of Haemophilus ducreyi lipooligosaccharide (LOS) mutants defective in expression of heptosyltransferase III and beta 1,4-glucosyltransferase: identification of LOS glycoforms containing lactosamine repeats. Infect Immun 68, 3352-3361.[CrossRef]
    [Google Scholar]
  9. Finlay, B. & Falkow, S. ( 1989; ). Common themes in microbial pathogenicity. Microbiol Rev 53, 210-230.
    [Google Scholar]
  10. Guasch, J. F., Piqué, N., Climent, N., Ferrer, S., Merino, S., Rubirés, X., Aguilar, A., Tomás, J. M. & Regué, M. ( 1996; ). Cloning and characterization of two Serratia marcescens genes involved in core lipopolysaccharide biosynthesis. J Bacteriol 178, 5741-5747.
    [Google Scholar]
  11. Hansen, D. S., Mestre, F., Albertı́, S., Hernández-Allés, S., Alvarez, D., Domenech Sanchez, A., Gil, J., Merino, S., Tomás, J. M. & Benedı́, V. J. ( 1999; ). Klebsiella pneumoniae lipopolysaccharide O-typing: revision of prototype strains and O-group distribution among clinical isolates of different sources and countries. J Clin Microbiol 37, 56-62.
    [Google Scholar]
  12. Heinrichs, D. E., Yethon, J. A. & Whitfield, C. ( 1998; ). Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol Microbiol 30, 221-232.[CrossRef]
    [Google Scholar]
  13. Hitchcock, P. J. & Brown, T. M. ( 1983; ). Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol 154, 269-277.
    [Google Scholar]
  14. Kahler, C. M., Carlson, R. W., Rahman, M. M., Martin, L. E. & Stephens, D. S. ( 1996; ). Two glycosyltransferase genes, lgtF and rfaK, constitute the lipooligosaccharide (ice inner core extension) biosynthesis operon of Neisseria meningitidis. J Bacteriol 178, 6677-6684.
    [Google Scholar]
  15. Källenius, G., Korkhonen, T. K., Väisänen-Rhen, V. & Svenson, S. B. ( 1985; ). Adherence assays. In Enterobacterial Surface Antigens , pp. 321-331. Edited by T. K. Korkhonen, E. A. Dawes & P. H. Mäkelä. Amsterdam:Elsevier.
  16. Karkhanis, Y. D., Zeltner, J. Y., Jackson, J. J. & Carlo, D. J. ( 1978; ). A new improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of gram-negative bacteria. Anal Biochem 85, 595-601.[CrossRef]
    [Google Scholar]
  17. Licht, T. R., Krogfelt, K. A., Cohen, P. S., Poulsen, L. K., Urbance, J. & Molin, S. ( 1996; ). Role of lipopolysaccharide in colonization of the mouse intestine by Salmonella typhimurium studied by in situ hydridization. Infect Immun 64, 3811-3817.
    [Google Scholar]
  18. Link, A. J., Phillips, D. & Church, G. M. ( 1997; ). Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179, 6228-6237.
    [Google Scholar]
  19. Marshall, K. C. ( 1984; ). Glossary. In Microbial Adhesion and Aggregation , pp. 397-399. Edited by K. C. Marshall. New York:Springer.
  20. Merino, S., Camprubı́, S., Albertı́, S., Benedı́, V. J. & Tomás, J. M. ( 1992; ). Klebsiella pneumoniae resistance mechanisms to complement mediated killing. Infect Immun 60, 2529-2535.
    [Google Scholar]
  21. Merino, S., Rubires, X., Aguilar, A. & Tomás, J. M. ( 1997; ). The role of O1-antigen in the adhesion to uroepithelial cells of Klebsiella pneumoniae grown in urine. Microb Pathog 23, 49-53.[CrossRef]
    [Google Scholar]
  22. Merino, S., Altarriba, M., Izquierdo, L., Nogueras, M. M., Regué, M. & Tomás, J. M. ( 2000; ). Cloning and sequencing of the Klebsiella pneumoniae O5 wb gene cluster and its role in pathogenesis. Infect Immun 68, 2435-2440.[CrossRef]
    [Google Scholar]
  23. Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor NY: Cold Spring Harbor Laboratory.
  24. Nevola, J. J., Laux, D. C. & Cohen, P. S. ( 1987; ). In vivo colonization of the mouse large intestine and in vitro penetration of intestinal mucus by an avirulent smooth strain of Salmonella typhimurium and its lipopolysaccharide-deficient mutant. Infect Immun 55, 2884-2990.
    [Google Scholar]
  25. Pearson, W. R. & Lipman, D. J. ( 1988; ). Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85, 2444-2448.[CrossRef]
    [Google Scholar]
  26. Pradel, E. & Schnaitman, C. A. ( 1991; ). Effect of the rfaH (sfrB) and temperature on the expression of the rfa genes of Escherichia coli K-12. J Bacteriol 173, 6428-6431.
    [Google Scholar]
  27. Pratt, L. A. & Kolter, R. ( 1998; ). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30, 285-293.[CrossRef]
    [Google Scholar]
  28. Radziejewska-Lebrecht, J., Shashkov, A. S., Stroobant, V., Wartenberg, K., Wart, C. & Mayer, H. ( 1994; ). The inner core region of Yersinia enterocolitica. Eur J Biochem 221, 343-351.[CrossRef]
    [Google Scholar]
  29. Reeves, P. R., Hobbs, M., Valvano, M. A. & 8 other authors ( 1996; ). Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4, 495–503.[CrossRef]
    [Google Scholar]
  30. Regué, M., Climent, N., Abitiu, N., Coderch, N., Merino, S., Izquierdo, L., Altarriba, M. & Tomás, J. M. ( 2001; ). Genetic characterization of the Klebsiella pneumoniae waa gene cluster, involved in core lipopolysaccharide biosynthesis. J Bacteriol 183, 3564-3573.[CrossRef]
    [Google Scholar]
  31. Reid, G. & Sobel, J. D. ( 1984; ). Bacterial adherence in the pathogenesis of urinary tract infections: a review. Rev Infect Dis 9, 470-487.
    [Google Scholar]
  32. Rosenberg, M., Gutnick, D. & Rosenberg, E. ( 1980; ). Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9, 29-33.[CrossRef]
    [Google Scholar]
  33. Russo, T. A., Brown, J. J., Jodush, S. T. & Johnson, J. R. ( 1996; ). The O4 specific antigen moiety of lipopolysaccharide but not the K54 group 2 capsule is important for urovirulence of an extraintestinal isolate of Escherichia coli. Infect Immun 64, 2343-2348.
    [Google Scholar]
  34. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74, 5463-5467.[CrossRef]
    [Google Scholar]
  36. Schnaitman, C. L. & Klena, J. D. ( 1993; ). Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev 57, 655-682.
    [Google Scholar]
  37. Sofia, H. J., Burland, V., Daniels, D. L., Plunkert, G.III & Blattner, F. R. ( 1994; ). Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76·0 to 81·5 minutes. Nucleic Acids Res 22, 2576-2586.[CrossRef]
    [Google Scholar]
  38. Süsskind, M., Brade, L., Brade, H. & Holst, O. ( 1998; ). Identification of a novel heptoglycan of β1α2-linked d-glycero-d-manno-heptopyranose: chemical and antigenic structure of lipopolysaccharides from Klebsiella pneumoniae ssp. pneumoniae rough strain R20 (O1:K20). J Biol Chem 273, 7006-7017.[CrossRef]
    [Google Scholar]
  39. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680.[CrossRef]
    [Google Scholar]
  40. Toguchi, A., Siano, M., Burkhart, M. & Harshey, R. M. ( 2000; ). Genetics of swarming motility in Salmonella enterica serovar Typhimurium: critical role of lipopolysaccharide. J Bacteriol 182, 6308-6321.[CrossRef]
    [Google Scholar]
  41. Tsai, C. M. & Frasch, C. E. ( 1982; ). A sensitive silver stain for detecting lipopolysaccharide in polyacrylamide gels. Anal Biochem 119, 115-119.[CrossRef]
    [Google Scholar]
  42. Vinogradov, E. & Perry, M. B. ( 2001; ). Structural analysis of the core region of the lipopolysaccharides from eight serotypes of Klebsiella pneumoniae. Carbohydr Res 335, 291-296.[CrossRef]
    [Google Scholar]
  43. Vinogradov, E. V., Holst, O., Thomas-Oates, J. E., Broady, K. W. & Brade, H. ( 1992; ). The structure of the O-antigenic polysaccharide from lipopolysaccharide of Vibrio cholerae strain H11 (non-O1). Eur J Biochem 210, 491-498.[CrossRef]
    [Google Scholar]
  44. Vinogradov, E., Radziejewska-Lebrecht, J. & Kaca, W. ( 2000; ). The structure of the carbohydrate backbone of core-lipid A region of the lipopolysaccharides from Proteus mirabilis wild-type strain S1959 (serotype O3) and its Ra mutant R110/1959. Eur J Biochem 267, 262-268.[CrossRef]
    [Google Scholar]
  45. Watnick, P. I., Laurino, C. M., Klose, K. E., Croal, L. & Kolter, R. ( 2001; ). The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol Microbiol 39, 223-235.[CrossRef]
    [Google Scholar]
  46. Westphal, O. & Jann, K. ( 1965; ). Bacterial lipopolysaccharides: extraction with phenol-water and further applications of the procedure. Methods Carbohydr Chem 5, 83-91.
    [Google Scholar]
  47. Yethon, J. A., Heinrichs, D. E., Monteiro, M. A., Perry, M. B. & Whitfield, C. ( 1998; ). Involvement of waaY, waaQ, and waaP in the modification of Escherichia coli lipopolysaccharide and their role in the formation of a stable outer membrane. J Biol Chem 273, 26310-26316.[CrossRef]
    [Google Scholar]
  48. Yethon, J. A., Gunn, J. S., Ernst, R. K., Miller, S. I., Laroche, L., Malo, D. & Whitfield, C. ( 2000; ). Salmonella enterica serovar Typhimurium waaP mutants show increased susceptibility to polymyxin and loss of virulence in vivo. Infect Immun 68, 4485-4491.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3485
Loading
/content/journal/micro/10.1099/00221287-148-11-3485
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error