1887

Abstract

The complex consists of several closely related bacterial species (or genomovars) which although generally not pathogenic for healthy individuals, contribute significantly to morbidity and mortality among persons with cystic fibrosis (CF). Certain complex strains are more frequently recovered from CF sputum cultures than are others, and these typically reside in genomovar III. The ET12 clone is a genomovar III strain that predominates among CF patients in Canada and the United Kingdom and is characterized by distinctive -encoded pili that have a cable-like morphology. In a previous survey of complex isolates recovered from 606 CF patients in the US, a single genomovar III ET12 isolate (isolate AU0007) was identified; several -containing genomovar I isolates, however, were also detected. In the study reported here, analysis by PFGE revealed several distinct strain types among these genomovar I isolates, and sequence analysis of their genes demonstrated 878–884% identity to the ET12 sequence. Southern analysis indicated that the variant from each genomovar I isolate resides on a 4 kbp RI fragment, in contrast to ET12 isolates, in which localizes to a 5 kbp RI fragment. Western blot assay indicated expression of the 16 kDa major pilin subunit by ET12 isolates, including AU0007, but neither whole-cell nor surface-protein extracts of the genomovar I reacted. Electron microscopy revealed the complete absence of pili expression by the genomovar I isolates. In contrast to typical ET12 isolates, AU0007 appeared to be hyperpiliated with rigid pili that lacked the cable morphology and did not bind cytokeratin 13, which has been previously identified as the epithelial cell receptor for the ET12 cable-pili-associated adhesin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3477
2002-11-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483477a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3477&mimeType=html&fmt=ahah

References

  1. Auble, D. T., Allen, T. L. & DeHaseth, P. I. ( 1987; ). Promoter recognition by Escherichia coli RNA polymerase. Effects of substitutions in the spacer DNA separating the −10 and −35 regions. J Biol Chem 261, 11202-11206.
    [Google Scholar]
  2. Chen, J. S., Witzmann, K., Spilker, T., Fink, R. & LiPuma, J. J. ( 2001; ). Endemicity and inter-city spread of Burkholderia cepacia genomovar III in cystic fibrosis. J Pediatr 139, 643-649.[CrossRef]
    [Google Scholar]
  3. Clode, F. E., Kaufmann, M. E., Malnick, H. & Pitt, T. L. ( 2000; ). Distribution of genes encoding putative transmissibility factors among epidemic and non-epidemic strains of Burkholderia cepacia from cystic fibrosis patients in the United Kingdom. J Clin Microbiol 38, 1763-1766.
    [Google Scholar]
  4. Coenye, T., Vandamme, P., Govan, J. R. W. & LiPuma, J. J. ( 2001; ). Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol 39, 3427-3436.[CrossRef]
    [Google Scholar]
  5. Cravioto, A., Scotland, S. M. & Rowe, B. ( 1982; ). Hemagglutination activity and colonization factor antigens I and II in enterotoxigenic and non-enterotoxigenic strains of E. coli isolated from humans. Infect Immun 43, 508-514.
    [Google Scholar]
  6. Franke, W. W., Schiller, D. L., Moll, R. , Winter, E., Schmid, E., Engelbrecht, L., Denk, H., Kreplear, R. & Platzer, B. ( 1981; ). Diversity of cytokeratins. Differentiation specific expression of cytokeratin polypeptides in epithelial cells and tissues. J Mol Biol 153, 933-955.[CrossRef]
    [Google Scholar]
  7. Govan, J. R. W., Brown, P. H., Maddison, J., Doherty, C. J., Nelson, J. W., Dodd, Greening, A. P. & Webb, A. K. ( 1993; ). Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet 342, 15–19.[CrossRef]
    [Google Scholar]
  8. Hearst, J. E. & Elliott, K. E. ( 1995; ). Identifying the killer in cystic fibrosis. Nat Med 1, 626-627.[CrossRef]
    [Google Scholar]
  9. Johnson, W. M., Tyler, S. D. & Rozee, K. R. ( 1994; ). Linkage analysis of geographical and clinical clusters in Pseudomonas cepacia infections by multilocus enzyme electrophoresis and ribotyping. J Clin Microbiol 32, 924-930.
    [Google Scholar]
  10. LiPuma, J. J. ( 1998; ). Burkholderia cepacia: management issues and new insights. Clin Chest Med 19, 473-486.[CrossRef]
    [Google Scholar]
  11. LiPuma, J. J. & Mahenthiralingam, E. ( 1999; ). Commercial use of Burkholderia cepacia. Emerg Infect Dis 5, 305-306.[CrossRef]
    [Google Scholar]
  12. LiPuma, J. J., Dulaney, B. J., McMenamin, J. D., Whitby, P. W., Stull, T. L., Coenye, T. & Vandamme, P. ( 1999; ). Development of rRNA-based PCR assays for identification of Burkholderia cepacia complex isolates recovered from cystic fibrosis patients. J Clin Microbiol 37, 3167-3170.
    [Google Scholar]
  13. LiPuma, J. J., Spilker, T., Gill, L., Campbell, P. W., Liu, L. & Mahenthiralingam, E. ( 2001; ). Disproportionate distribution of Burkholderia cepacia complex species and transmissibility factors in cystic fibrosis. Am J Respir Crit Care Med 164, 92-96.[CrossRef]
    [Google Scholar]
  14. Mahenthiralingam, E., Simpson, D. A. & Speert, D. P. ( 1997; ). Identification and characterization of a novel DNA marker associated with epidemic Burkholderia cepacia strains recovered from patients with cystic fibrosis. J Clin Microbiol 35, 808-816.
    [Google Scholar]
  15. Mahenthiralingam, E., Bischof, J., Byrne, S. K., Radomski, C., Davies, J. E., Av-Gay, Y. & Vandamme, P. ( 2000a; ). DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J Clin Microbiol 38, 3165-3173.
    [Google Scholar]
  16. Mahenthiralingam, E., Coenye, T, Chung, J. W., Speert, D. P., Govan, J. R., Taylor, P. & Vandamme, P. ( 2000b; ). Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 38, 910-913.
    [Google Scholar]
  17. Parke, J. L. & Gurian-Sherman, D. ( 2001; ). Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39, 225-258.[CrossRef]
    [Google Scholar]
  18. Pitt, T. L., Kaufmann, M. E., Patel, P. S., Benge, L. C., Gaskin, S. & Livermore, D. M. ( 1996; ). Type characterisation and antibiotic susceptibility of Burkholderia (Pseudomonas) cepacia isolates from patients with cystic fibrosis in the United Kingdom and the Republic of Ireland. J Med Microbiol 44, 203-210.[CrossRef]
    [Google Scholar]
  19. Richardson, J., Stead, D. E. & Coutts, R. H. A. ( 2001; ). Incidence of the cblA major subunit pilin gene amongst Burkholderia species. FEMS Microbiol Lett 196, 61-66.[CrossRef]
    [Google Scholar]
  20. Sajjan, U. S. & Forstner, J. F. ( 1992; ). Identification of the mucin-binding adhesin of Pseudomonas cepacia isolated from patients with cystic fibrosis. Infect Immun 60, 1434-1440.
    [Google Scholar]
  21. Sajjan, U. S., Sun, L., Goldstein, R. & Forstner, J. F. ( 1995; ). Cable (cbl) type II pili of cystic fibrosis-associated Burkholderia (Pseudomonas) cepacia: nucleotide sequence of the cblA major subunit pilin gene and novel morphology of the assembled appendage fibers. J Bacteriol 177, 1030-1038.
    [Google Scholar]
  22. Sajjan, U. S., Sylvester, F. A. & Forstner, J. ( 2000a; ). Cable-piliated Burkholderia cepacia binds to cytokeratin 13 of epithelial cells. Infect Immun 68, 1787-1795.[CrossRef]
    [Google Scholar]
  23. Sajjan, U., Wu, Y., Kent, G. & Forstner, J. ( 2000b; ). Preferential adherence of cable-piliated Burkholderia cepacia to respiratory epithelia of CF knockout mice and human cystic fibrosis lung explants. J Med Microbiol 49, 875-885.
    [Google Scholar]
  24. Sajjan, U. S., Ackerly, C. & Forstner, J. (2002). Interaction of cblA adhesin positive Burkholderia cepacia with squamous epithelia. Cell Microbiol (in press).
  25. Speert, D. P., Henry, D., Vandamme, P., Corey, M. & Mahenthiralingam, E. ( 2002; ). Epidemiology of Burkholderia cepacia complex inpatients with cystic fibrosis in Canada: geographical distribution and clustering of strains. Emerg Infect Dis 8, 181-187.[CrossRef]
    [Google Scholar]
  26. Sun, L., Jiang, R.-Z., Steinbach, S. & 7 other authors ( 1995; ). The emergence of a highly transmissible lineage of cbl + Pseudomonas (Burkholderia) cepacia causing CF centre epidemics in North America and Britain. Nat Med 1, 661–666.[CrossRef]
    [Google Scholar]
  27. Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H. & Swaminathan, B. ( 1995; ). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33, 2233-2239.
    [Google Scholar]
  28. Whiteford, M. L., Wilkenson, J. D., McColl, J. H., Conoln, F. M., Michie, J. R., Evans, T. J. & Paton, J. Y. ( 1995; ). Outcome of Burkholderia (Pseudomonas) cepacia colonisation in children with cystic fibrosis following a hospital outbreak. Thorax 50, 1194-1198.[CrossRef]
    [Google Scholar]
  29. Wise, M. G., Shimkets, L. J. & McArthur, J. V. ( 1995; ). Genetic structure of a lotic population of Burkholderia (Pseudomonas) cepacia. Appl Environ Microbiol 61, 1791-1798.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3477
Loading
/content/journal/micro/10.1099/00221287-148-11-3477
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error