1887

Abstract

Mannitol metabolism in MG1363 and in a derivative strain deficient in lactate dehydrogenase (LDH) was characterized. Both strains had the ability to grow on mannitol as an energy source, although this polyol was a poorer substrate for growth than glucose. When compared to glucose, the metabolism of mannitol caused an NADH burden due to formation of an additional NADH molecule at the reaction catalysed by mannitol-1-phosphate dehydrogenase (Mtl1PDH). This resulted in a prominent accumulation of mannitol 1-phosphate (Mtl1P) both in growing and resting cells, suggesting the existence of a severe bottleneck at Mtl1PDH. Growth on mannitol induced the activity of Mtl1PDH in both the LDH and MG1363 strains. The lower accumulation of Mtl1P in mannitol-grown cells when compared to glucose-grown LDH cells, as monitored by C-NMR, reflects this induction. A clear shift towards the production of ethanol was observed on mannitol, indicating pressure to regenerate NAD when this substrate was used. A strategy to obtain a mannitol-overproducing strain is proposed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3467
2002-11-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483467a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3467&mimeType=html&fmt=ahah

References

  1. Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., Ehrlich, S. D. & Sorokin, A. ( 2001; ). The complete genome sequence of lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11, 731-753.[CrossRef]
    [Google Scholar]
  2. Chakravorty, M. ( 1964; ). Metabolism of mannitol and induction of mannitol 1-phosphate dehydrogenase in Lactobacillus plantarum. J Bacteriol 87, 1246-1248.
    [Google Scholar]
  3. Deutscher, J., Kuster, E., Bergstedt, U., Charrier, V. & Hillen, W. ( 1995; ). Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol Microbiol 15, 1049-1053.[CrossRef]
    [Google Scholar]
  4. de Vries, W. & Stouthamer, A. H. ( 1968; ). Fermentation of glucose, lactose, galactose, mannitol, and xylose by bifidobacteria. J Bacteriol 96, 472-478.
    [Google Scholar]
  5. Dols, M., Chraibi, W., Remaud-Simeon, M., Lindley, N. D. & Monsan, P. F. ( 1997; ). Growth and energetics of Leuconostoc mesenteroides NRRL B-1299 during metabolism of various sugars and their consequences for dextransucrase production. Appl Environ Microbiol 63, 2159-2165.
    [Google Scholar]
  6. Edwards, K. G., Blumenthal, H. J., Khan, M. & Slodki, M. E. ( 1981; ). Intracellular mannitol, a product of glucose metabolism in staphylococci. J Bacteriol 146, 1020-1029.
    [Google Scholar]
  7. Efiuvwevwere, B. J. O., Gorris, L. G. M., Smid, E. J. & Kets, E. P. W. ( 1999; ). Mannitol-enhanced survival of Lactococcus lactis subjected to drying. Appl Microbiol Biotechnol 51, 100-104.[CrossRef]
    [Google Scholar]
  8. Even, S., Garrigues, C., Loubiere, P., Lindley, N. D. & Cocaign-Bousquet, M. ( 1999; ). Pyruvate metabolism in Lactococcus lactis is dependent upon glyceraldehyde-3-phosphate dehydrogenase activity. Metab Eng 1, 198-205.[CrossRef]
    [Google Scholar]
  9. Ezra, F. S., Lucas, D. S., Mustacich, R. V. & Russell, A. F. ( 1983; ). Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of anaerobic glucose metabolism and lactate transport in Staphylococcus aureus cells. Biochemistry 22, 3841-3849.[CrossRef]
    [Google Scholar]
  10. Fordyce, A. M., Moore, C. H. & Pritchard, G. G. ( 1982; ). Phosphofructokinase from Streptococcus lactis. Methods Enzymol 90, 77-82.
    [Google Scholar]
  11. Furia, T. E. (1972). Handbook of Food Additives, 2nd edn. West Palm Beach, FL: CRC Press.
  12. Garrigues, C., Loubiere, P., Lindley, N. D. & Cocaign-Bousquet, M. ( 1997; ). Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol 179, 5282-5287.
    [Google Scholar]
  13. Gasson, M. J. ( 1983; ). Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154, 1-9.
    [Google Scholar]
  14. Gasson, M. J., Benson, K., Swindel, S. & Griffin, H. ( 1996; ). Metabolic engineering of the Lactococcus lactis diacetyl pathway. Lait 76, 33-40.[CrossRef]
    [Google Scholar]
  15. Grobben, G. J., Peters, S. W., Wisselink, H. W., Weusthuis, R. A., Hoefnagel, M. H., Hugenholtz, J. & Eggink, G. ( 2001; ). Spontaneous formation of a mannitol-producing variant of Leuconostoc pseudomesenteroides grown in the presence of fructose. Appl Environ Microbiol 67, 2867-2870.[CrossRef]
    [Google Scholar]
  16. Hugenholtz, J. & Starrenburg, M. J. C. ( 1992; ). Diacetyl production by different strains of Lactococcus lactis subsp. lactis var. diacetylactis and Leuconostoc spp. Appl Microbiol Biotechnol 38, 17-22.
    [Google Scholar]
  17. Hult, K., Veide, A. & Gatenbeck, S. ( 1980; ). The distribution of the NADPH regenerating mannitol cycle among fungal species. Arch Microbiol 128, 253-255.[CrossRef]
    [Google Scholar]
  18. Kets, E. P. W., Galinski, E. A., de Wit, M., de Bont, J. A. M. & Heipieper, H. J. ( 1996; ). Mannitol, a novel bacterial compatible solute in Pseudomonas putida S12. J Bacteriol 178, 6665-6670.
    [Google Scholar]
  19. Kiser, R. C. & Niehaus, W. G. J. ( 1981; ). Purification and kinetic characterization of mannitol-1-phosphate dehydrogenase from Aspergillus niger. Arch Biochem Biophys 211, 613-621.[CrossRef]
    [Google Scholar]
  20. Lee, C. A., Jacobson, G. R. & Saier, M. H.Jr. ( 1981; ). Plasmid-directed synthesis of enzymes required for d-mannitol transport and utilization in Escherichia coli. Proc Natl Acad Sci USA 78, 7336-7340.[CrossRef]
    [Google Scholar]
  21. Loesche, W. J. & Kornman, K. S. ( 1976; ). Production of mannitol by Streptococcus mutans. Arch Oral Biol 21, 551-553.[CrossRef]
    [Google Scholar]
  22. Luesink, E. J., van Herpen, R. E., Grossiord, B. P., Kuipers, O. P. & de Vos, W. M. ( 1998; ). Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol Microbiol 30, 789-798.[CrossRef]
    [Google Scholar]
  23. Luxo, C., Nobre, M. F. & da Costa, M. S. ( 1993; ). Intracellular polyol accumulation by yeast-like fungi. Can J Microbiol 39, 868-873.[CrossRef]
    [Google Scholar]
  24. Maryanski, J. H. & Wittenberger, C. L. ( 1975; ). Mannitol transport in Streptococcus mutans. J Bacteriol 124, 1475-1481.
    [Google Scholar]
  25. Miwa, Y., Nagura, K., Eguchi, S., Fukuda, H., Deutscher, J. & Fujita, Y. ( 1997; ). Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements. Mol Microbiol 23, 1203-1213.[CrossRef]
    [Google Scholar]
  26. Monedero, V., Kuipers, O. P., Jamet, E. & Deutscher, J. ( 2001; ). Regulatory functions of serine-46-phosphorylated HPr in Lactococcus lactis. J Bacteriol 183, 3391-3398.[CrossRef]
    [Google Scholar]
  27. Neves, A. R., Ramos, A., Nunes, M. C., Kleerebezem, M., Hugenholtz, J., de Vos, W. M., Almeida, J. & Santos, H. ( 1999; ). In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Biotechnol Bioeng 64, 200-212.[CrossRef]
    [Google Scholar]
  28. Neves, A. R., Ramos, A., Shearman, C., Gasson, M. J., Almeida, J. S. & Santos, H. ( 2000; ). Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR. Eur J Biochem 267, 3859-3868.[CrossRef]
    [Google Scholar]
  29. Neves, A. R., Ventura, R., Mansour, N., Shearman, C., Gasson, M. J., Maycock, C., Ramos, A. & Santos, H. ( 2002; ). Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD+ and NADH pools determined in vivo by 13C NMR. J Biol Chem 277, 28088–28098.[CrossRef]
    [Google Scholar]
  30. Nóvak, L., Cocaign-Bousquet, M., Lindley, N. D. & Loubiere, P. ( 1997; ). Metabolism and energetics of Lactococcus lactis during growth in complex or synthetic media. Appl Environ Microbiol 63, 2665-2670.
    [Google Scholar]
  31. Poolman, B. & Konings, W. N. ( 1988; ). Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport. J Bacteriol 170, 700-707.
    [Google Scholar]
  32. Poolman, B., Smid, E. J., Veldkamp, H. & Konings, W. N. ( 1987; ). Bioenergetic consequences of lactose starvation for continuously cultured Streptococcus cremoris. J Bacteriol 169, 1460-1468.
    [Google Scholar]
  33. Postma, P. W., Lengeler, J. W. & Jacobson, G. R. ( 1993; ). Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57, 543-594.
    [Google Scholar]
  34. Rager, M. N., Binet, M. R. & Bouvet, O. M. ( 1999; ). 31P and 13C nuclear magnetic resonance studies of metabolic pathways in Pasteurella multocida characterization of a new mannitol-producing metabolic pathway. Eur J Biochem 263, 695-701.[CrossRef]
    [Google Scholar]
  35. Ramos, A. & Santos, H. ( 1996; ). Citrate and sugar cofermentation in Leuconostoc oenos, a 13C nuclear magnetic resonance study. Appl Environ Microbiol 62, 2577-2585.
    [Google Scholar]
  36. Ramos, A., Boels, I. C., de Vos, W. M. & Santos, H. ( 2001; ). Relationship between glycolysis and exopolysaccharide biosynthesis in Lactococcus lactis. Appl Environ Microbiol 67, 33-41.[CrossRef]
    [Google Scholar]
  37. Rosenberg, H., Pearce, S. M., Hardy, C. M. & Jacomb, P. A. ( 1984; ). Rapid turnover of mannitol-1-phosphate in Escherichia coli. J Bacteriol 158, 63-68.
    [Google Scholar]
  38. Rozenberg-Arska, M., Van Asbeck, B. S., Martens, T. F. & Verhoef, J. ( 1985; ). Damage to chromosomal and plasmid DNA by toxic oxygen species. J Gen Microbiol 131, 3325-3330.
    [Google Scholar]
  39. Streekstra, H., Buurman, E. T., Hoitink, C. W. G., de Mattos, M. J. T., Neijssel, O. M. & Tempest, D. W. ( 1987; ). Fermentation shifts and metabolic reactivity during anaerobic carbon-limited growth of Klebsiella aerogenes NCTC 418 in fructose, gluconate, mannitol and pyruvate. Arch Microbiol 148, 137-143.[CrossRef]
    [Google Scholar]
  40. van Munster, I. P. & Nagengast, F. M. ( 1993; ). The role of carbohydrate fermentation in colon cancer prevention. Scand J Gastroenterol Suppl 200, 80-86.
    [Google Scholar]
  41. Yamada, T. ( 1987; ). Regulation of glycolysis in streptococci. In Sugar Transport and Metabolism in Gram-positive Bacteria , pp. 69-93. Edited by J. Reizer & A. Peterkofsky. Chichester:Ellis Horwood.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3467
Loading
/content/journal/micro/10.1099/00221287-148-11-3467
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error