1887

Abstract

Many bacteria can grow on chloroaromatic pollutants because they can transform them into chlorocatechols, which are further degraded by enzymes of a specialized -cleavage pathway. JMP134 is able to grow on 3-chlorobenzoate by using two pJP4-encoded, -cleavage chlorocatechol degradation gene clusters ( and ). Very little is known about the acquisition of new catabolic genes encoding enzymes that lead to the formation of chlorocatechols in JMP134. The effect on the catabolic properties of an JMP134 derivative that received the gene module, encoding the -regulated expression of the broad-substrate-range toluate 1,2-dioxygenase () and the 1,2-dihydro-1,2-dihydroxytoluate dehydrogenase () from pWW0, which allows the transformation of 4-chlorobenzoate into 4-chlorocatechol, was studied. Such a derivative could efficiently grow on 4-chlorobenzoate. Unexpectedly, this derivative also grew on 3,5-dichlorobenzoate, a substrate for XylXYZL but not an inducer of the XylS regulatory protein. The ability to grow on 4-chlorobenzoate or 3,5-dichlorobenzoate was also observed in derivatives of strain JMP134 containing the gene module but lacking , indicating the presence of an -like element in with an inducer profile different from that of the pWW0-encoded regulator. Growth on 4-chlorobenzoate was also observed after introduction of the gene module into strain JMP222, a JMP134 derivative lacking pJP4, but only if multiple copies of or were present. However, only the derivative containing multiple copies of was able to grow on 3,5-dichlorobenzoate. These observations indicate that although the acquisition of new catabolic genes actually enhances the catabolic abilities of JMP134, these new properties are strongly influenced by the dosage of the genes, the presence of a chromosomal -like regulatory element and the different contributions of the gene clusters.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3431
2002-11-01
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483431a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3431&mimeType=html&fmt=ahah

References

  1. Ahmed A., Podemski L. 1995; The revised nucleotide sequence of Tn 5 . Gene 154:129–133
    [Google Scholar]
  2. Alexeyev M. F, Shokolenko I. N., Croughan T. P. 1995; New mini-Tn 5 derivatives for insertion mutagenesis and genetic engineering in Gram-negative bacteria. Can J Microbiol 41:1053–1055
    [Google Scholar]
  3. Ausubel F. M, Brent R, Kingston R. E, Moore D. D, Seidman J. G, Smith J. A., Struhl K. (editors) 1992 Short Protocols in Molecular Biology, 2nd edn. New York: Greene Publishing Associates;
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  5. Brinkmann U., Reineke W. 1992; Degradation of chlorotoluenes by in vivo constructed hybrid strains: problems of enzyme specificity, induction and prevention of meta -pathway. FEMS Microbiol Lett 75:81–87
    [Google Scholar]
  6. Clément P, Matus V, Cárdenas L., González B. 1995; Degradation of trichlorophenols by Alcaligenes eutrophus JMP134. FEMS Microbiol Lett 127:51–55
    [Google Scholar]
  7. Cowles C. E, Nichols N. N., Harwood C. 2000; BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida . J Bacteriol 182:6339–6346
    [Google Scholar]
  8. de Lorenzo V, Herrero M, Jacubzik U., Timmis K. N. 1990; Mini-Tn 5 transposon derivatives for insertion mutagenesis, promoter probing and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172:6568–6572
    [Google Scholar]
  9. Don R. H., Pemberton J. M. 1981; Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus . J Bacteriol 145:681–686
    [Google Scholar]
  10. Don R. H, Weightman A. J, Knackmuss H.-J., Timmis K. N. 1985; Transposon mutagenesis and cloning analyses of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pJP4). J Bacteriol 161:85–90
    [Google Scholar]
  11. Friedrich B, Meyer M., Schlegel H. G. 1983; Transfer and expression of the herbicide-degrading plasmid pJP4 in aerobic autotrophic bacteria. Arch Microbiol 134:92–97
    [Google Scholar]
  12. Haugland R. A, Schlemm D. J, Lyons R. P.III, Sferra P. R., Chakrabarty A. M. 1990; Degradation of the chlorinated phenoxyacetate herbicides 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures. Appl Environ Microbiol 56:1357–1362
    [Google Scholar]
  13. Jeffrey W. H, Cuskey S. M, Chapman P. J, Resnick S., Olsen R. H. 1992; Characterization of Pseudomonas putida mutants unable to catabolize benzoate: cloning and characterization of Pseudomonas genes involved in benzoate catabolism and isolation of a chromosomal DNA fragment able to substitute for xylS in activation of the TOL lower-pathway promoter. J Bacteriol 174:4986–4996
    [Google Scholar]
  14. Kasberg T, Daubaras D. L, Chakrabarty A. M, Kinzelt D., Reineke W. 1995; Evidence that operons tcb , tfd and clc encode maleylacetate reductase, the fourth enzyme of the modified ortho pathway. J Bacteriol 177:3885–3889
    [Google Scholar]
  15. Kleinsteuber S, Müller R. H., Babel W. 2001; Expression of the 2,4-D degradative pathway of pJP4 in an alkaliphilic, moderately halophilic soda lake isolate, Halomonas sp. EF43. Extremophiles 5:375–384
    [Google Scholar]
  16. Klemba M, Jakobs B, Wittich R.-M., Pieper D. H. 2000; Chromosomal integration of tcb chlorocatechol degradation pathways genes as a means of expanding the growth substrate range of bacteria to include haloaromatics. Appl Environ Microbiol 66:3255–3261
    [Google Scholar]
  17. Kovach M. E, Elzer P. H, Hill D. S, Robertson G. T, Farris M. A, Roop R. M. 2nd, Peterson K. M. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176
    [Google Scholar]
  18. Kröckel L., Focht D. 1987; Construction of chlorobenzene-utilizing recombinants by progenitive manifestation of a rare event. Appl Environ Microbiol 53:2470–2475
    [Google Scholar]
  19. Kuhm A. E, Schlömann M, Knackmuss H.-J., Pieper D. H. 1990; Purification and characterization of dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP134. Biochem J 266:877–883
    [Google Scholar]
  20. Laemmli C. M, Leveau J. H. J, Zehnder A. J. B., van der Meer J. R. 2000; Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4). J Bacteriol 182:4165–4172
    [Google Scholar]
  21. Laemmli C. M, Schönenberger R, Suter M, Zehnder A. J. B., van der Meer J. R. 2002; TfdDII, one of the two chloromuconate cycloisomerases of Ralstonia eutropha JMP134(pJP4), cannot efficiently convert 2-chloro- cis , cis -muconate to trans -dienelactone to allow growth on 3-chlorobenzoate. Arch Microbiol 178:13–25
    [Google Scholar]
  22. Leveau J. H. J, König F, Füchslin H, Werlen C., van der Meer J. R. 1999; Dynamics of multigene expression during catabolic adaptation of Ralstonia eutropha JMP134(pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Mol Microbiol 33:396–406
    [Google Scholar]
  23. Matrubutham U., Harker A. H. 1994; Analysis of duplicated gene sequences associated with tfdR and tfdS in Alcaligenes eutrophus JMP134. J Bacteriol 176:2348–2353
    [Google Scholar]
  24. Padilla L, Matus V, Zenteno P., González B. 2000; Degradation of 2,4,6-trichlorophenol via chlorohydroxyquinol in Ralstonia eutropha JMP134 and JMP222. J Basic Microbiol 40:243–249
    [Google Scholar]
  25. Parales R. E., Harwood C. S. 1993; Construction and use of a new broad-host-range lac Z transcriptional fusion vector, pHRP309, for gram− bacteria. Gene 133:23–30
    [Google Scholar]
  26. Pérez-Pantoja D, Guzmán L, Manzano M, Pieper D. H., González B. 2000; Role of tfdC I D I E I F I and tfdD II C II E II F IIgene modules in catabolism of 3-chlorobenzoate by Ralstonia eutropha JMP134(pJP4). Appl Environ Microbiol 66:1602–1608
    [Google Scholar]
  27. Perkins E. J, Gordon M. P, Cáceres O., Lurquin P. F. 1990; Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J Bacteriol 172:2352–2359
    [Google Scholar]
  28. Pieper D. H, Reineke W, Engesser K.-H., Knackmuss H.-J. 1988; Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP134. Arch Microbiol 150:95–102
    [Google Scholar]
  29. Pieper D. H, Engesser K.-H., Knackmuss H.-J. 1989; Regulation of catabolic pathways of phenoxyacetic acids and phenols in Alcaligenes eutrophus JMP134. Arch Microbiol 151:356–371
    [Google Scholar]
  30. Pieper D. H, Knackmuss H.-J., Timmis K. N. 1993; Accumulation of 2-chloromuconate during metabolism of 3-chlorobenzoate by Alcaligenes eutrophus JMP134. Appl Microbiol Biotechnol 39:563–567
    [Google Scholar]
  31. Plumeier I, Pérez-Pantoja D, Heim S, González B., Pieper D. H. 2002; Importance of different tfd genes for degradation of chloroaromatics by Ralstonia eutropha JMP134. J Bacteriol 184:4054–4064
    [Google Scholar]
  32. Ramos J. L, Stolz A, Reineke W., Timmis K. N. 1986; Altered effector specificities in regulators of gene expression: TOL plasmid xylS mutants and their use to engineer expansion of the range of aromatics degraded by bacteria. Proc Natl Acad Sci USA 83:8467–8471
    [Google Scholar]
  33. Ravatn R, Studer S, Springael D, Zehnder A. J. B., van der Meer J. R. 1998; Chromosomal integration, tandem amplification, and deamplification in Pseudomonas putida F1, of a 105-kilobase genetic element containing the chlorocatechol degradative genes from Pseudomonas sp. strain B13. J Bacteriol 180:4360–4369
    [Google Scholar]
  34. Reineke W. 1998; Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annu Rev Microbiol 52:287–331
    [Google Scholar]
  35. Reineke W., Knackmuss H.-J. 1978; Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of benzoic acid. Biochim Biophys Acta 542:412–433
    [Google Scholar]
  36. Reineke W., Knackmuss H.-J. 1979; Construction of haloaromatics utilising bacteria. Nature 277:385–386
    [Google Scholar]
  37. Reineke W., Knackmuss H.-J. 1980; Hybrid pathway to chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives. J Bacteriol 142:467–473
    [Google Scholar]
  38. Reineke W., Knackmuss H.-J. 1988; Microbial degradation of haloaromatics. Annu Rev Microbiol 42:263–287
    [Google Scholar]
  39. Rojo F, Pieper D. H, Engesser K.-H, Knackmuss H.-J., Timmis K. N. 1987; Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics. Science 238:1395–1398
    [Google Scholar]
  40. Sahasrabudhe A. V., Modi V. V. 1991; Degradation of isomeric monochlorobenzoates and 2,4-dichlorophenoxyacetic acid by a constructed Pseudomonas sp. Appl Microbiol Biotechnol 34:556–557
    [Google Scholar]
  41. Seibert V, Stadler-Fritzsche K., Schlömann M. 1993; Purification and characterization of maleylacetate reductase from Alcaligenes eutrophus JMP134(pJP4). J Bacteriol 175:6745–6754
    [Google Scholar]
  42. Streber W, Timmis K. N., Zenk M. H. 1987; Analysis, cloning and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134. J Bacteriol 169:2950–2955
    [Google Scholar]
  43. Trefault N, Clément P, Manzano M, Pieper D. H., González B. 2002; The copy number of the catabolic plasmid pJP4 affects growth of Ralstonia eutropha JMP134(pJP4) on 3-chlorobenzoate. FEMS Microbiol Lett 212:95–100
    [Google Scholar]
  44. van der Meer J. R, de Vos W, Harayama S., Zehnder A. J. B. 1992; Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56:677–694
    [Google Scholar]
  45. Vollmer M. D, Schell U, Seibert V, Lakner S., Schlömann M. 1999; Substrate specificities of the chloromuconate cycloisomerases from Pseudomonas sp. B13, Ralstonia eutropha JMP134 and Pseudomonas sp. P51. Appl Microbiol Biotechnol 51:598–605
    [Google Scholar]
/content/journal/micro/10.1099/00221287-148-11-3431
Loading
/content/journal/micro/10.1099/00221287-148-11-3431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error