1887

Abstract

When mucoid (alginate-producing) FRD1 is grown under low oxygen conditions in liquid culture (static), non-mucoid variants appear and eventually predominate. This conversion is not readily observed in aerobic, shaken cultures or static cultures containing the alternative electron acceptor nitrate. In this study, it is shown that the non-mucoid variants that arise under static growth conditions are almost exclusively mutants. It has been shown that AlgT not only positively regulates alginate biosynthesis, but also directly or indirectly negatively regulates flagellum synthesis. Indeed, during static growth, conversion to the non-mucoid phenotype is accompanied by the acquisition of flagellum-mediated motility. Surprisingly, by using a reporter gene fusion with the promoter (p::), it was found that expression begins within hours of static growth and is reversible after returning the culture to shaking conditions. The ability of the strain to produce alginate seems to be irrelevant to this phenomenon, as an AlgT Δ strain showed identical results. Thus, it is suggested that the first effect of static growth is to induce motility as an adaptive measure in the presence of wild-type . This may afford the ability to swim towards areas of higher oxygen concentrations. Subsequent to this, mutations are likely to secure the motile phenotype.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3423
2002-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483423a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3423&mimeType=html&fmt=ahah

References

  1. Arora S. K, Ritchings B. W, Almira E. C, Lory S., Ramphal R. 1998; The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion. Infect Immun 66:1000–1007
    [Google Scholar]
  2. Ausubel F. M, Brent R, Kingston R. E, Moore D. D, Seidman J. G, Smith J. A., Struhl K. 1992 Short Protocols in Molecular Biology New York: Greene Publishing and Wiley;
    [Google Scholar]
  3. Davies D. G, Chakrabarty A. M., Geesey G. G. 1993; Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa . Appl Environ Microbiol 59:1181–1186
    [Google Scholar]
  4. Devries C. A., Ohman D. E. 1994; Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT , encoding a putative alternative sigma factor, and shows evidence for autoregulation. J Bacteriol 176:6677–6687
    [Google Scholar]
  5. Deziel E, Comeau Y., Villemur R. 2001; Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 183:1195–1204
    [Google Scholar]
  6. Fellay R, Frey J., Krisch H. 1987; Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of Gram-negative bacteria. Gene 52:147–154
    [Google Scholar]
  7. Figurski D., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652
    [Google Scholar]
  8. Flynn J. L., Ohman D. E. 1988; Cloning of genes from mucoid Pseudomonas aeruginosa which control spontaneous conversion to the alginate production phenotype. J Bacteriol 170:1452–1460
    [Google Scholar]
  9. Garrett E., Wozniak D. J. 1999; Negative control of flagellum synthesis in Pseudomonas aeruginosa is modulated by the alternative sigma factor AlgT (AlgU). J Bacteriol 181:7401–7404
    [Google Scholar]
  10. Goldberg J. B, Gorman W. L, Flynn J. L., Ohman D. E. 1993; A mutation in algN permits trans activation of alginate production by algT in Pseudomonas species. J Bacteriol 175:1303–1308
    [Google Scholar]
  11. Govan J. R. W. 1975; Mucoid strains of Pseudomonas aeruginosa : the influence of culture medium on the stability of mucus production. J Med Microbiol 8:513–522
    [Google Scholar]
  12. Govan J. R. W., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev 60:539–574
    [Google Scholar]
  13. Govan J. W. R, Fyfe J. A. M., McMillan C. 1979; The instability of mucoid Pseudomonas aeruginosa : fluctuation test and improved stability of the mucoid form with shaken culture. J Gen Microbiol 110:229–232
    [Google Scholar]
  14. Hassett D. 1996; Anaerobic production of alginate by Pseudomonas aeruginosa : alginate restricts diffusion of oxygen. J Bacteriol 178:7322–7325
    [Google Scholar]
  15. Hassett D. J, Woodruff W, Wozniak D. J, Vasil M. L, Cohen M. S., Ohman D. E. 1993; Cloning and characterization of the Pseudomonas aeruginosa sodA and sodB genes encoding iron- and manganese-cofactored superoxide dismutase: Demonstration of increased manganese superoxide dismutase activity in alginate-producing bacteria. J Bacteriol 175:7658–7665
    [Google Scholar]
  16. Hoang T. T, Karkhoff-Schweizer R. R, Kutchma A. J., Schweizer H. 1998; A broad-host-range Flp- FRT recombination system for site-specific excision of chromosomally-located DNA sequences: applications for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86
    [Google Scholar]
  17. Luzar M. A, Thomassen M. J., Montie T. C. 1985; Flagella and motility alterations in Pseudomonas aeruginosa strains from patients with cystic fibrosis: relationship to patient clinical conditions. Infect Immun 50:577–582
    [Google Scholar]
  18. Ma S, Selvaraj U, Ohman D. E, Quarless R, Hassett D. J., Wozniak D. J. 1998; Phosphorylation-independent activity of the response regulators AlgB and AlgR in promoting alginate biosynthesis in mucoid Pseudomonas aeruginosa . J Bacteriol 180:956–968
    [Google Scholar]
  19. Mahenthiralingam E, Campbell M. E., Speert D. P. 1994; Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 62:596–605
    [Google Scholar]
  20. Maniatis T, Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Martin D. W, Schurr M. J, Mudd M. H, Govan J. R. W, Holloway B. W., Deretic V. 1993; Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci USA 90:8377–8381
    [Google Scholar]
  22. Mathee K, McPherson C. J., Ohman D. E. 1997; Posttranslational control of the algT ( algU )-encoded σ22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J Bacteriol 179:3711–3720
    [Google Scholar]
  23. Mathee K, Ciofu O, Sternberg C. 9 other authors 1999; Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145:1349–1357
    [Google Scholar]
  24. Nichols N. N., Harwood C. S. 2000; An aerotaxis transducer gene from Pseudomonas putida . FEMS Microbiol Lett 182:177–183
    [Google Scholar]
  25. Ohman D. E., Chakrabarty A. M. 1981; Genetic mapping of chromosomal determinants for the production of the exopolysaccharide alginate in a Pseudomonas aeruginosa cystic fibrosis isolate. Infect Immun 33:142–148
    [Google Scholar]
  26. O’Toole G. A., Kolter R. 1998; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304
    [Google Scholar]
  27. Rebbapragada A, Johnson M. S, Harding G. P, Zuccarelli A. J, Fletcher H. M, Zhulin I. B., Taylor B. L. 1997; The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. Proc Natl Acad Sci USA 94:10541–10546
    [Google Scholar]
  28. Schweizer H. P., Hoang T. T. 1995; An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa . Gene 158:15–22
    [Google Scholar]
  29. Stover C. K, Pham X. Q, Erwin A. L. 28 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964
    [Google Scholar]
  30. Taylor B. L, Zhulin I. B., Johnson M. S. 1999; Aerotaxis and other energy-sensing behavior in bacteria. Annu Rev Microbiology 53:103–128
    [Google Scholar]
  31. Totten P. A, Lara J. C., Lory S. 1990; The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J Bacteriol 172:389–396
    [Google Scholar]
  32. Woolwine S., Wozniak D. J. 1999; Identification of an Escherichia coli pepA homolog and its involvement in suppression of the algB phenotype in mucoid Pseudomonas aeruginosa. J Bacteriol 181:107–116
    [Google Scholar]
  33. Woolwine S, Sprinkle A. B., Wozniak D. J. 2001; Loss of Pseudomonas aeruginosa PhpA aminopeptidase activity results in increased algD transcription. J Bacteriol 183:4674–4679
    [Google Scholar]
  34. Worlitzsch D, Tarran R, Ulrich M. 12 other authors 2002; Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109:317–325
    [Google Scholar]
  35. Wozniak D. J., Ohman D. E. 1994; Transcriptional analysis of the Pseudomonas aeruginosa genes algR , algB and algD reveals a hierarchy of alginate gene expression which is modulated by algT. J Bacteriol 176:6007–6014
    [Google Scholar]
  36. Wyckoff T. J. O., Wozniak D. J. 2001; Transcriptional analysis of genes involved in Pseudomonas aeruginosa biofilms. Methods Enzymol 336:144–151
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3423
Loading
/content/journal/micro/10.1099/00221287-148-11-3423
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error