Cell-wall proteinases PrtS and PrtB have a different role in / mixed cultures in milk Free

Abstract

The manufacture of yoghurt relies on the simultaneous utilization of two starters: and subsp. (). A protocooperation usually takes place between the two species, which often results in enhanced milk acidification and aroma formation compared to pure cultures. Cell-wall proteinases of and lactobacilli have been shown to be essential to growth in milk in pure cultures. In this study, the role of proteinases PrtS from and PrtB from in bacterial growth in milk was evaluated; a negative mutant for the gene of CNRZ 385 was constructed for this purpose. Pure cultures of CNRZ 385 and its PrtS-negative mutant were made in milk as well as mixed cultures of and : CNRZ 385 or its PrtS-negative mutant was associated with several strains of , including a PrtB-negative strain. The pH and growth of bacterial populations of the resulting mixed cultures were followed, and the strain was found to influence both the extent of the benefit of / association on milk acidification and the magnitude of population dominance at the end of fermentation. In all mixed cultures, the sequential growth of then of and finally of both bacteria was observed. Although proteinase PrtS was essential to growth in milk in pure culture, it had no effect on bacterial growth and thus on the final pH of mixed cultures in the presence of PrtB. In contrast, proteinase PrtB was necessary for the growth of , and its absence resulted in a higher final pH. From these results, a model of growth of both bacteria in mixed cultures in milk is proposed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3413
2002-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483413a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3413&mimeType=html&fmt=ahah

References

  1. Accolas J. P, Veaux M., Auclair J. 1971; Etude des interactions entre diverses bactéries lactiques thermophiles et mésophiles, en relation avec la fabrication des fromages à pâté cuite. Lait Accolas, J. P., Bloquel, R., Didienne, R. & Regnier, J. (1977) . Propriétés acidifiantes des bacteries lactiques thermophiles en relation avec la fabrication du yoghourt. Lait 57: 1–23. 505–506, 249–272
    [Google Scholar]
  2. Bautista E. S, Dahiya R. S., Speck M. L. 1966; Identification of compounds causing symbiotic growth of Streptococcus thermophilus and Lactobacillus bulgaricus in milk. J Dairy Res 33:299–307
    [Google Scholar]
  3. Beal C., Corrieu G. 1991; Influence of pH, temperature, and inoculum composition on mixed cultures of Streptococcus thermophilus 404 and Lactobacillus 398. Biotechnol Bioeng 38:90–98
    [Google Scholar]
  4. Bracquart P., Lorient D. 1977; Effet des acides aminés sur la croissance de Streptococcus thermophilus . Milchwissenschaft 32:221–224
    [Google Scholar]
  5. De Man J. C, Rogosa M., Sharpe M. E. 1960; A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135
    [Google Scholar]
  6. Desmazeaud M. 1983; L’état des connaissances en matière de nutrition des bactéries lactiques. Lait 63:267–316
    [Google Scholar]
  7. El-Soda M. A, Desmazeaud M. J, Le Bars D., Zevaco C. 1986; Cell-wall-associated proteinases in Lactobacillus casei and Lactobacillus plantarum . J Food Prot 49:361–365
    [Google Scholar]
  8. Exterkate F. A. 1990; Differences in short peptide-substrate cleavage by two cell-envelope-located serine proteinases of Lactococcus lactis subsp. cremoris are related to secondary binding specificity. Appl Microbiol Biotechnol 33:401–406
    [Google Scholar]
  9. Fernandez-Espla M.-D, Garault P, Monnet V., Rul F. 2000; Streptococcus thermophilus cell wall-anchored proteinase, release, purification, and biochemical and genetic characterization. Appl Environ Microbiol 66:4772–4778
    [Google Scholar]
  10. Garault P, Letort C, Juillard V., Monnet V. 2000; Branched-chain amino acid biosynthesis is essential for optimal growth of Streptococcus thermophilus in milk. Appl Environ Microbiol 66:5128–5133
    [Google Scholar]
  11. Gasson M. J. 1983; Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9
    [Google Scholar]
  12. Gilbert C, Atlan D, Blanc B, Portalier R, Germond J. E, Lapierre L., Mollet B. 1996; A new cell surface proteinase, sequencing and analysis of the prtB gene from Lactobacillus delbrueckii subsp. bulgaricus. J Bacteriol 178:3059–3065
    [Google Scholar]
  13. Gilbert C, Blanc B, Frot-Coutaz J, Portalier R., Atlan D. 1997; Comparison of cell surface proteinase activities within the Lactobacillus genus. J Dairy Res 64:561–571
    [Google Scholar]
  14. Hamdy M. K, Harper W. J., Weisier H. H. 1955; Acidic free amino compounds formed in various lactic acid starter cultures as measured by ion exchange chromatography. Appl Microbiol 3:221–226
    [Google Scholar]
  15. Hebert E. M, Raya R. R., De Giori G. S. 2000; Nutritional requirements and nitrogen-dependent regulation of proteinase activity of Lactobacillus helveticus CRL 1062. Appl Environ Microbiol 66:5316–5321
    [Google Scholar]
  16. Hickey M. W, Hillier A. J., Jago G. R. 1983; Peptidase activities in lactobacilli. Aust J Dairy Technol 38:118–123
    [Google Scholar]
  17. Higashio K, Yoshioka Y., Kikuchi T. 1977; Isolation and identification of growth factor of Streptococcus thermophilus by Lactobacillus bulgaricus . J Agric Chem Soc Jpn 51:203–208
    [Google Scholar]
  18. Holo H., Nes I. F. 1989; High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123
    [Google Scholar]
  19. Huggins A. M., Sandine W. E. 1984; Differentiation of fast and slow milk coagulating isolates in strains of streptococci. J Dairy Sci 67:1674–1679
    [Google Scholar]
  20. Laloi P, Atlan D, Blanc B, Gilbert C., Portalier R. 1991; Cell-wall-associated proteinase of Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397, differential extraction, purification and properties of the enzyme. Appl Microbiol Biotechnol 36:196–204
    [Google Scholar]
  21. Ledesma O. V, de Ruiz Holgado A. P, Oliver G, de Giorgi G. S, Raibaud P., Galpin J. V. 1977; A synthetic medium for comparative nutritional studies of lactobacilli. J Appl Bacteriol 42:123–133
    [Google Scholar]
  22. Letort C. 2001 Relation entre croissance et nutrition azotée de deux bactéries lactiques thermophiles, Streptococcus thermophilus et Lactobacillus delbrueckii subsp. bulgaricus PhD thesis University of Poitiers; France:
    [Google Scholar]
  23. Letort C., Juillard V. 2001; Development of a minimal chemical defined medium for the exponential growth of Streptococcus thermophilus . J Appl Microbiol 91:1–7
    [Google Scholar]
  24. Letort C, Nardi M, Garault P, Monnet V., Juillard V. 2002; Casein utilization by Streptococcus thermophilus results in a diauxic growth in milk. Appl Environ Microbiol 68:3162–3165
    [Google Scholar]
  25. Maguin E, Prevost H, Ehrlich D., Gruss A. 1996; Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria. J Bacteriol 178:931–935
    [Google Scholar]
  26. Monnet V, Le Bars D., Gripon J. C. 1987; Partial characterization and comparison of cell wall proteinases from 5 strains of Streptococcus lactis . Lait 67:51–61
    [Google Scholar]
  27. Morishita T, Deguchi Y, Yajima M, Sakurai T., Yura T. 1981; Multiple nutritional requirements of lactobacilli, genetic lesions affecting amino acid biosynthetic pathways. J Bacteriol 148:64–71
    [Google Scholar]
  28. Ott A, Hugi A, Baumgartner M., Chaintreau A. 2000; Sensory investigation of yogurt flavour perception, mutual influence of volatiles and acidity. J Agric Food Chem 48:441–450
    [Google Scholar]
  29. Pederson J. A, Mileski G. J, Weimer B. C., Steele J. L. 1999; Genetic characterization of a cell envelope-associated proteinase from Lactobacillus helveticus CNRZ32. J Bacteriol 181:4592–4597
    [Google Scholar]
  30. Pette J. W., Lolkema H. 1950a; Symbiosis and antibiosis in mixed cultures Lb. bulgaricus and S. thermophilus . Neth Milk Dairy J 4:197–208
    [Google Scholar]
  31. Pette J. W., Lolkema H. 1950b; Growth stimulating factors for Streptococcus thermophilus . Neth Milk Dairy J 4:209–224
    [Google Scholar]
  32. Pette J. W., Lolkema H. 1950c; Acid formation and aroma formation in yoghurt. Neth Milk Dairy J 4:261–273
    [Google Scholar]
  33. Pospiech A., Neumann B. 1995; A versatile quick-prep of genomic DNA from Gram-positive bacteria. Trends Genet 11:217–218
    [Google Scholar]
  34. Puhan Z., Banhegyi M. 1974; Effect of incubation temperature on the ratio of Lactobacillus bulgaricus to Streptococcus thermophilus in yoghurt. Schweiz Milchwirtsch Forsch 3:9–13
    [Google Scholar]
  35. Radke-Mitchell L., Sandine W. E. 1984; Associative growth and differential enumeration of Streptococcus thermophilus and Lactobacillus bulgaricus , a review. J Food Prot 47:245–248
    [Google Scholar]
  36. Rajagopal S. N., Sandine W. E. 1990; Associative growth and proteolysis of Streptococcus thermophilus and Lactobacillus bulgaricus in skim milk. J Dairy Sci 73:894–899
    [Google Scholar]
  37. Sambrook J, Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Shahbal S, Hemme D., Desmazeaud M. 1991; High cell wall-associated proteinase activity of some Streptococcus thermophilus strains (H-strains) correlated with a high acidification rate in milk. Lait 71:351–357
    [Google Scholar]
  39. Shahbal S, Hemme D., Renault P. 1993; Characterization of a cell envelope-associated proteinase activity from Streptococcus thermophilus H-strains. Appl Environ Microbiol 59:177–182
    [Google Scholar]
  40. Shankar P. A., Davies F. L. 1977; Associative bacterial growth in yoghurt starters; initial observations on stimulatory factors. J Soc Dairy Technol 30:31–32
    [Google Scholar]
  41. Shankar P. A., Davies F. L. 1978 [Conference paper] XX International Dairy Congress, Paris vol. E pp 467–468
    [Google Scholar]
  42. Siezen R. J. 1999; Multi-domain, cell-envelope proteinases of lactic acid bacteria. Antonie van Leeuwenhoek 76:139–155
    [Google Scholar]
  43. Siezen R. J, Bruinenberg P. G, Vos P, Van Allen-Boerrigter I. J, Nijhuis M, Alting A. C, Exterkate F. A., De Vos W. M. 1993; Engineering of the substrate-binding region of the subtilisin-like, cell envelope proteinase of Lactococcus lactis . Protein Eng 6:927–937
    [Google Scholar]
  44. Singh J., Sharma D. K. 1983; Proteolytic breakdown of casein and its fraction by lactic acid bacteria. Milchwissenschaft 38:148–149
    [Google Scholar]
  45. Sodini I, Latrille E., Corrieu G. 2000; Identification of interacting mixed cultures of lactic acid bacteria by their exclusion from a model predicting the acidifying activity of non-interacting mixed cultures. Appl Microbiol Biotechnol 54:715–718
    [Google Scholar]
  46. Stefanitsi D, Sakellaris G., Garel J. R. 1995; The presence of two proteinases associated with the wall of Lactobacillus bulgaricus . FEMS Microbiol Lett 128:53–58
    [Google Scholar]
  47. Tamine A. Y., Robinson R. K. 1999 Yoghurt Science and Technology, 2nd edn. Cambridge: Woodhead;
    [Google Scholar]
  48. Terzaghi B. E., Sandine W. E. 1975; Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813
    [Google Scholar]
  49. Thomas T. D., Mills O. E. 1981; Proteolytic enzymes of starter bacteria. Neth Milk Dairy J 35:255–273
    [Google Scholar]
  50. Thomas T. D., Pritchard G. G. 1987; Proteolytic enzymes of dairy starter cultures. FEMS Microbiol Rev 46:245
    [Google Scholar]
  51. Zourari A, Accolas J. P., Desmazeaud M. J. 1992; Metabolism and biochemical characteristics of yogurt bacteria. A review. Lait 72:1–34
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3413
Loading
/content/journal/micro/10.1099/00221287-148-11-3413
Loading

Data & Media loading...

Most cited Most Cited RSS feed