1887

Abstract

168 was assayed for its growth on tricarboxylic acid (TCA) cycle intermediates and related compounds as the sole carbon sources. Growth of the organism was supported by citrate, D-isocitrate, succinate, fumarate and L-malate, whereas no growth was observed in the presence of -aconitate,2-oxoglutarate, D-malate, oxaloacetate and tricarballylate. Growth of the organism on the tricarboxylates citrate and D-isocitrate required the presence of functional CitM, an Mg–citrate transporter, whereas its growth on succinate, fumarate and L-malate appeared to be CitM-independent. Interestingly, the naturally occurring enantiomer D-isocitrate was favoured over L-isocitrate by the organism. Like citrate, D-isocitrate was shown to be an inducer of expression in . The addition of 1 mM Mg to the growth medium improved growth of the organism on both citrate and D-isocitrate, suggesting that D-isocitrate was taken up by CitM in complex with divalent metal ions. Subsequently, the ability of CitM to transport D-isocitrate was demonstrated by competition experiments and by heterologous exchange in right-side-out membrane vesicles prepared from cells expressing . None of the other TCA cycle intermediates and related compounds tested were recognized by CitM. Uptake experiments using radioactive Ni provided direct evidence that D-isocitrate is transported in complex with divalent metal ions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3405
2002-11-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483405a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3405&mimeType=html&fmt=ahah

References

  1. Asai, K., Baik, S. H., Kasahara, Y., Moriya, S. & Ogasawara, N. ( 2000; ). Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis. Microbiology 146, 263-271.
    [Google Scholar]
  2. Aymerich, S., Gonzy-Tréboul, G. & Steinmetz, M. ( 1986; ). 5′-Noncoding region sacR is the target of all identified regulation affecting the levansucrase gene in Bacillus subtilis. J Bacteriol 166, 993-998.
    [Google Scholar]
  3. Bandell, M. & Lolkema, J. S. ( 1999; ). Stereoselectivity of the membrane potential-generating citrate and malate transporters of lactic acid bacteria. Biochemistry 38, 10352-10360.[CrossRef]
    [Google Scholar]
  4. Bandell, M., Ansanay, V., Rachidi, N., Dequin, S. & Lolkema, J. S. ( 1997; ). Membrane potential-generating malate (MleP) and citrate (CitP) transporters of lactic acid bacteria are homologous proteins. Substrate specificity of the 2-hydroxycarboxylate transporter family. J Biol Chem 272, 18140-18146.[CrossRef]
    [Google Scholar]
  5. Boorsma, A., van der Rest, M. E., Lolkema, J. S. & Konings, W. N. ( 1996; ). Secondary transporters for citrate and the Mg2+–citrate complex in Bacillus subtilis are homologous proteins. J Bacteriol 178, 6216-6222.
    [Google Scholar]
  6. Bott, M. ( 1997; ). Anaerobic citrate metabolism and its regulation in enterobacteria. Arch Microbiol 167, 78-88.[CrossRef]
    [Google Scholar]
  7. Fortnagel, P. & Freese, E. ( 1968; ). Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle. J Bacteriol 95, 1431-1438.
    [Google Scholar]
  8. Fournier, R. E., McKillen, M. N., Pardee, A. B. & Willecke, K. ( 1972; ). Transport of dicarboxylic acids in Bacillus subtilis. Inducible uptake of l-malate. J Biol Chem 247, 5587-5595.
    [Google Scholar]
  9. Goel, A., Lee, J., Domach, M. M. & Ataai, M. M. ( 1995; ). Suppressed acid formation by cofeeding of glucose and citrate in Bacillus cultures: emergence of pyruvate kinase as a potential metabolic engineering site. Biotechnol Prog 11, 380-385.[CrossRef]
    [Google Scholar]
  10. Janausch, I. G., Zientz, E., Tran, Q. H., Kröger, A. & Unden, G. ( 2002; ). C4-dicarboxylate carriers and sensors in bacteria. Biochim Biophys Acta 1553, 39-56.[CrossRef]
    [Google Scholar]
  11. Kaback, H. R. ( 1983; ). The lac carrier protein in Escherichia coli. J Membr Biol 76, 95-112.[CrossRef]
    [Google Scholar]
  12. Kay, W. W. ( 1978; ). Transport of carboxylic acids. In Bacterial Transport , pp. 385-411. Edited by B. P. Rosen. New York:Marcel Dekker.
  13. Krom, B. P., Warner, J. B., Konings, W. N. & Lolkema, J. S. ( 2000; ). Complementary metal ion specificity of the metal–citrate transporters CitM and CitH of Bacillus subtilis. J Bacteriol 182, 6374-6381.[CrossRef]
    [Google Scholar]
  14. Krom, B. P., Aardema, R. & Lolkema, J. S. ( 2001; ). Bacillus subtilis YxkJ is a secondary transporter of the 2-hydroxycarboxylate transporter family that transports l-malate and citrate. J Bacteriol 183, 5862-5869.[CrossRef]
    [Google Scholar]
  15. Kunst, F., Ogasawara, N., Moszer, I. & 48 other authors ( 1997; ). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef]
    [Google Scholar]
  16. Lolkema, J. S., Enequist, H. & van der Rest, M. E. ( 1994; ). Transport of citrate catalyzed by the sodium-dependent citrate carrier of Klebsiella pneumoniae is obligatorily coupled to the transport of two sodium ions. Eur J Biochem 220, 469-475.[CrossRef]
    [Google Scholar]
  17. Martell, A. E. & Smith, R. M. (1977). Critical Stability Constants, vol. 3: Other Organic Ligands. New York: Plenum.
  18. McKillen, M. N., Willecke, K. & Pardee, A. B. ( 1972; ). Citrate transport by Bacillus subtilis. In The Molecular Basis of Biological Transport , pp. 249-70. Edited by J. F. Woessner & F. Huijung. New York:Academic Press.
  19. Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  20. Somers, J. M., Sweet, G. D. & Kay, W. W. ( 1981; ). Fluorocitrate resistant tricarboxylate transport mutants of Salmonella typhimurium. Mol Gen Genet 181, 338-345.[CrossRef]
    [Google Scholar]
  21. Sweet, G. D., Kay, C. M. & Kay, W. W. ( 1984; ). Tricarboxylate-binding proteins of Salmonella typhimurium. Purification, crystallization, and physical properties. J Biol Chem 259, 1586-1592.
    [Google Scholar]
  22. van der Rest, M. E., Molenaar, D. & Konings, W. N. ( 1992; ). Mechanism of Na+-dependent citrate transport in Klebsiella pneumoniae. J Bacteriol 174, 4893-4898.
    [Google Scholar]
  23. Warner, J. B. & Lolkema, J. S. ( 2002; ). LacZ-promoter fusions: the effect of growth. Microbiology 148, 1241-1243.
    [Google Scholar]
  24. Warner, J. B., Krom, B. P., Magni, C., Konings, W. N. & Lolkema, J. S. ( 2000; ). Catabolite repression and induction of the Mg2+–citrate transporter CitM of Bacillus subtilis. J Bacteriol 182, 6099-6105.[CrossRef]
    [Google Scholar]
  25. Wei, Y., Guffanti, A. A., Ito, M. & Krulwich, T. A. ( 2000; ). Bacillus subtilis YqkI is a novel malic/Na+–lactate antiporter that enhances growth on malate at low protonmotive force. J Biol Chem 275, 30287-30292.[CrossRef]
    [Google Scholar]
  26. Widenhorn, K. A., Somers, J. M. & Kay, W. W. ( 1988; ). Expression of the divergent tricarboxylate transport operon (tctI) of Salmonella typhimurium. J Bacteriol 170, 3223-3227.
    [Google Scholar]
  27. Yamamoto, H., Murata, M. & Sekiguchi, J. ( 2000; ). The CitST two-component system regulates the expression of the Mg–citrate transporter in Bacillus subtilis. Mol Microbiol 37, 898-912.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3405
Loading
/content/journal/micro/10.1099/00221287-148-11-3405
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error