1887

Abstract

In this study a set of ATCC 31615 mutants was characterized, which are incapable of synthesizing some or all of the deoxyhexose sugars of aclacinomycin A. Complementation experiments with the the mutant strains H026, H038, H039, H054, H063, H065 and H075 were carried out with glycosylation genes previously derived from the wild-type . Mutations in strains H038, H063 and H075 were complemented with single PCR-amplified genes. Furthermore, amplification and sequencing of the corresponding genes from the mutant strains revealed single point mutations in the sequences. First, in H038 a transition mutation in , encoding a putative dTDP-hexose 3-ketoreductase, causes an amino acid substitution from glycine to aspartate, suppressing the biosynthesis of both 2-deoxyfucose and rhodinose and thus leading to the accumulation of aclacinomycin T with rhodosamine as its only sugar. Second, in H063, which accumulates aklavinone without a sugar moiety, amino acid substitution occurs, with threonine being substituted by isoleucine in dTDP-glucose synthase, the first enzyme participating in deoxyhexose biosynthesis, encoded by . Third, a nonsense mutation in leads to truncated dTDP-hexose 3-dehydratase in H075, which is incapable of synthesizing rhodinose. In addition, mutants H054 and H065, which accumulate aclacinomycins without aminosugars, were complemented by a gene for an aminotransferase, . Characterization of the nature of the mutations adds to the usefulness and value of the mutants in the analysis of gene function and in the creation of novel compounds by combinatorial biosynthesis. Furthermore, these results strengthen the assignments of gene products and enlighten the biosynthetic pathway for deoxyhexoses.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3375
2002-11-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483375a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3375&mimeType=html&fmt=ahah

References

  1. Aguirrezabalaga I, Olano C, Allende N, Rodriguez L, Braña A. F, Méndez C., Salas J. A. 2000; Identification and expression of genes involved in biosynthesis of l-oleandrose and its intermediate l-olivose in the oleandomycin producer Streptomyces antibioticus . Antimicrob Agents Chemother 44:1266–1275
    [Google Scholar]
  2. Bibb M. J, Janssen G. R., Ward J. M. 1985; Cloning and analysis of the promoter region of the erythromycin resistance gene ( ermE) of Streptomyces erythraeus . Gene 38:215–226
    [Google Scholar]
  3. Blanco G, Patallo E. P, Braña A. F, Trefzer A, Bechthold A, Rohr J, Méndez C., Salas J. A. 2001; Identification of a sugar flexible glycosyltransferase from Streptomyces olivaceus , the producer of the antitumor polyketide elloramycin. Chem Biol 8:253–263
    [Google Scholar]
  4. Casey M. L, Paulick R. C., Whitlock H. W. 1978; Carbon-13 nuclear magnetic resonance study of the biosynthesis of daunomycin and islandicin. J Org Chem 43:1627–1634
    [Google Scholar]
  5. Chen H, Agnihotri G, Guo Z, Que N. L. S, Chen X. H., Liu H.-w. 1999; Biosynthesis of mycarose: isolation and characterization of enzymes involved in the C-2 deoxygenation. J Am Chem Soc 121:8124–8125
    [Google Scholar]
  6. Draeger G, Park S.-H., Floss H. G. 1999; Mechanism of the 2-deoxygenation step in the biosynthesis of the deoxyhexose moieties of the antibiotics granaticin and oleandomycin. J Am Chem Soc 121:2611–2612
    [Google Scholar]
  7. Eckardt K, Schumann G, Gräfe U, Ihn W, Wagner C, Fleck W. F., Thrum H. 1985; Preparation of labeled aklanonic acid and its bioconversion to anthracyclinones by mutants of Streptomyces griseus . J Antibiot 38:1096–1097
    [Google Scholar]
  8. Fujii I., Ebizuka Y. 1997; Anthracycline biosynthesis in Streptomyces galilaeus . Chem Rev 97:2511–2523
    [Google Scholar]
  9. Gräfe U, Dornberger K, Fleck W. F., Freysoldt C. 1988; Compartmentation of enzymes interconverting aclacinomycins in Streptomyces species AM 33352. J Basic Microbiol 28:17–23
    [Google Scholar]
  10. Grein A. 1987; Antitumor anthracyclines produced by Streptomyces peucetius . Adv Appl Microbiol 32:203–214
    [Google Scholar]
  11. Hoffmeister D, Ichinose K, Domann S. 9 other authors 2000; The NDP-sugar co-substrate concentration and the enzyme expression level influence the substrate specificity of glycosyltransferases: cloning and characterization of deoxysugar biosynthetic genes of the urdamycin biosynthetic gene cluster. Chem Biol 7:821–831
    [Google Scholar]
  12. Hopwood D. A, Bibb M. J, Chater K. F. 7 other authors 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  13. Hutchinson C. R. 1997; Biosynthetic studies of daunorubicin and tetracenomycin C. Chem Rev 97:2525–2535
    [Google Scholar]
  14. Ichinose K, Bedford D. J, Tornus D, Bechthold A, Bibb M. J, Revill W. P, Floss H. G., Hopwood D. A. 1998; The granaticin biosynthetic gene cluster of Streptomyces violaceoruber Tü22: sequence analysis and expression in a heterologous host. Chem Biol 5:647–659
    [Google Scholar]
  15. Kessler A. C, Haase A., Reeves P. R. 1993; Molecular analysis of the 3,6-dideoxyhexose pathway genes of Yersinia pseudotuberculosis serogroup IIA. J Bacteriol 175:1412–1422
    [Google Scholar]
  16. Kieser T, Bibb M. J, Buttner M. J, Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  17. Kitamura I, Tobe H, Yoshimoto A, Oki T, Naganawa H, Takeuchi T., Umezawa H. 1981; Biosynthesis of aklavinone and aclacinomycins. J Antibiot 34:1498–1500
    [Google Scholar]
  18. Lei Y, Ploux O., Liu H.-w. 1995; Mechanistic studies on CDP-6-deoxy-l- threo -d- glycero -4-hexulose 3-dehydrase: identification of His-220 as the active-site base by chemical modification and site-directed mutagenesis. Biochemistry 34:4643–4654
    [Google Scholar]
  19. Oki T, Matsuzawa Y, Yoshimoto A. 10 other authors 1975; New antitumor antibiotics, aclacinomycins A and B. J Antibiot 28:830–834
    [Google Scholar]
  20. Olano C, Lomovskaya N, Fonstein L, Roll J. T., Hutchinson C. R. 1999; A two-plasmid system for the glycosylation of polyketide antibiotics: bioconversion of ϵ-rhodomycinone to rhodomycin D. Chem Biol 6:845–855
    [Google Scholar]
  21. Paulick R. C, Casey M. L., Whitlock H. W. 1976; A 13C nuclear magnetic resonance study of the biosynthesis of daunomycin from 13CH3 13CO2Na. J Am Chem Soc 98:3370–3371
    [Google Scholar]
  22. Piepersberg W. 1994; Pathway engineering in secondary metabolite-producing actinomycetes. Crit Rev Biotechnol 14:251–285
    [Google Scholar]
  23. Räty K, Kunnari T, Hakala J, Mäntsälä P., Ylihonko K. 2000; A gene cluster from Streptomyces galilaeus involved in glycosylation of aclarubicin. Mol Gen Genet 264:164–172
    [Google Scholar]
  24. Räty K, Kantola J, Hautala A, Hakala J, Ylihonko K., Mäntsälä P. 2002; Cloning and characterization of Streptomyces galilaeus aclacinomycins polyketide synthase (PKS) cluster. Gene 293:115–122
    [Google Scholar]
  25. Sambrook J, Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Schumann G, Stengel C, Eckardt K., Ihn W. 1986; Biotransformation of aklanonic acid by blocked mutants of anthracycline-producing strains of Streptomyces galilaeus and Streptomyces peucetius . J Basic Microbiol 26:249–255
    [Google Scholar]
  27. Strohl W. R, Dickens M. L, Rajgarhia V. B, Woo A. J., Priestley N. D. 1997; Anthracyclines. In Biotechnology of Antibiotics pp 577–657 Edited by Strohl W. R. New York: Marcel Dekker Inc;
    [Google Scholar]
  28. Tang L., McDaniel R. 2001; Construction of desosamine containing polyketide libraries using a glycosyltransferase with broad substrate specificity. Chem Biol 8:547–555
    [Google Scholar]
  29. Torkkell S. 2001 Anthracycline antibiotics: biosynthetic pathway and molecular genetics of nogalamycin, a product of Streptomyces nogalater PhD thesis University of Turku; Finland:
    [Google Scholar]
  30. Torkkell S, Ylihonko K, Hakala J, Skurnik M., Mäntsälä P. 1997; Characterization of Streptomyces nogalater genes encoding enzymes involved in glycosylation steps in nogalamycin biosynthesis. Mol Gen Genet 256:203–209
    [Google Scholar]
  31. Torkkell S, Kunnari T, Palmu K, Mäntsälä P, Hakala J., Ylihonko K. 2001; The entire nogalamycin biosynthetic gene cluster of Streptomyces nogalater : characterization of a 20-kb DNA region and generation of hybrid structures. Mol Genet Genomics 266:276–288
    [Google Scholar]
  32. Tornus D., Floss H. G. 2001; Identification of four genes from the granaticin biosynthetic gene cluster of Streptomyces violaceoruber Tü22 involved in the biosynthesis of l-rhodinose. J Antibiot 54:91–101
    [Google Scholar]
  33. Trefzer A, Fischer C, Stockert S, Westrich L, Künzel E, Girreser U, Rohr J., Bechthold A. 2001; Elucidation of the function of two glycosyltransferase genes ( lanGT1 and lanGT4 ) involved in landomycin biosynthesis and generation of new oligosaccharide antibiotics. Chem Biol 8:1239–1252
    [Google Scholar]
  34. Wagner C, Eckardt K, Schumann G, Ihn W., Tresselt D. 1984; Microbial transformation of aklanonic acid, a potential early intermediate in the biosynthesis of anthracyclines. J Antibiot 37:691–692
    [Google Scholar]
  35. Ward J. M, Janssen G. R, Kieser T, Bibb M. J, Buttner M. J., Bibb M. J. 1986; Construction and characterization of a series of multicopy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase from Tn 5 as indicator. Mol Gen Genet 203:468–478
    [Google Scholar]
  36. Westrich L, Domann S, Faust B, Bedford D, Hopwood D. A., Bechthold A. 1999; Cloning and characterization of a gene cluster from Streptomyces cyanogenus S136 probably involved in landomycin biosynthesis. FEMS Microbiol Lett 170:381–387
    [Google Scholar]
  37. Ylihonko K, Hakala J, Niemi J, Lundell J., Mäntsälä P. 1994; Isolation and characterization of aclacinomycin A-non-producing Streptomyces galilaeus (ATCC 31615) mutants. Microbiology 140:1359–1365
    [Google Scholar]
  38. Ylihonko K, Hakala J, Kunnari T., Mäntsälä P. 1996a; Production of hybrid anthracycline antibiotics by heterologous expression of Streptomyces nogalater nogalamycin biosynthesis genes. Microbiology 142:1965–1972
    [Google Scholar]
  39. Ylihonko K, Tuikkanen J, Jussila S, Cong L., Mäntsälä P. 1996b; A gene cluster involved in nogalamycin biosynthesis from Streptomyces nogalater : sequence analysis and complementation of early-block mutations in the anthracycline pathway. Mol Gen Genet 251:113–120
    [Google Scholar]
  40. Ylihonko K, Hakala J., Kunnari T. 1999; Hybrid anthracyclines from genetically engineered Streptomyces galilaeus strains . International Patent Application WO 99/58544 A1
    [Google Scholar]
  41. Yoshimoto A, Ogasawara T, Kitamura I, Oki T, Inui T, Takeuchi T., Umezawa H. 1979; Enzymatic conversion of aclacinomycin A to Y by a specific oxidoreductase in Streptomyces . J Antibiot 32:472–481
    [Google Scholar]
  42. Zhao L, Ahlert J, Xue Y, Thorson J. S, Sherman D. H., Liu H.-w. 1999; Engineering a methymycin/pikromycin-calicheamicin hybrid: construction of two new macrolides carrying a designed sugar moiety. J Am Chem Soc 121:9881–9882
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3375
Loading
/content/journal/micro/10.1099/00221287-148-11-3375
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error