1887

Abstract

Antibiotic production in can be activated by introducing certain mutations () into the gene that confer resistance to rifampicin. Working with the most typical () mutant strain, KO-417, the mutation was characterized. The mutation was shown to be responsible for activating antibiotic production and for reducing the growth rate of strain KO-417, as demonstrated by gene-replacement experiments. Gene-expression analysis revealed that introduction of into elevates expression of the pathway-specific regulatory gene - to nearly the same level seen in . The effect on antibiotic production was still evident in the genetic background of , indicating that the mutation can provoke its effect without depending on ppGpp. Accompanying the restoration of antibiotic production, mutants also exhibited a lower rate of RNA synthesis compared to the parental strain when grown in a nutritionally rich medium, suggesting that the mutant RNA polymerases may behave like ’stringent’ RNA polymerases. These results indicate that the mutation can alter the gene-expression pattern independent of ppGpp. The impaired growth of strain KO-417 () was largely restored by introducing the second mutation () just adjacent to the position. Proteome analysis using two-dimensional PAGE revealed that the mutant strain KO-418 () displayed a temporal burst of expression especially of two enzymes, glutamine synthetase (type II) and oxidoreductase, during the late growth phase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3365
2002-11-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483365a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3365&mimeType=html&fmt=ahah

References

  1. Aboshkiwa, M., Rowland, G. & Coleman, G. ( 1995; ). Nucleotide sequence of the Staphylococcus aureus RNA polymerase rpoB gene and comparison of its predicted amino acid sequence with those of other bacteria. Biochim Biophys Acta 1262, 73-78.[CrossRef]
    [Google Scholar]
  2. Barker, M. M., Gaal, T. & Gourse, R. L. ( 2001; ). Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP. J Mol Biol 305, 689-702.[CrossRef]
    [Google Scholar]
  3. Bibb, M. J. ( 1996; ). 1995 Colworth Prize Lecture. The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology 142, 1335-1344.[CrossRef]
    [Google Scholar]
  4. Champness, W. C. & Chater, K. F. ( 1994; ). Regulation and integration of antibiotic production and morphological differentiation in Streptomyces spp. In Regulation of Bacterial Differentiation , pp. 61-93. Edited by P. Piggot, C. P. Moran & P. Youngman. Washington, DC:American Society for Microbiology.
  5. Chater, K. F. ( 1993; ). Genetics of differentiation in Streptomyces. Annu Rev Microbiol 47, 685-713.[CrossRef]
    [Google Scholar]
  6. Chatterji, D., Fujita, N. & Ishihama, A. ( 1998; ). The mediator for stringent control, ppGpp, binds to the β-subunit of Escherichia coli RNA polymerase. Genes Cells 3, 279-287.[CrossRef]
    [Google Scholar]
  7. Demain, A. L. & Fang, A. ( 1995; ). Emerging concepts of secondary metabolism in actinomycetes. Actinomycetologica 9, 98-117.[CrossRef]
    [Google Scholar]
  8. Fisher, S. H. ( 1992; ). Glutamine synthesis in Streptomyces – a review. Gene 115, 13-17.[CrossRef]
    [Google Scholar]
  9. Fisher, S. H. ( 1999; ). Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference! Mol Microbiol 32, 223-232.[CrossRef]
    [Google Scholar]
  10. Gramajo, H. C., Takano, E. & Bibb, M. J. ( 1993; ). Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol 7, 837-845.[CrossRef]
    [Google Scholar]
  11. Hosoya, Y., Okamoto, S., Muramatsu, H. & Ochi, K. ( 1998; ). Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria. Antimicrob Agents Chemother 42, 2041-2047.
    [Google Scholar]
  12. Hu, H. & Ochi, K. ( 2001; ). Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations. Appl Environ Microbiol 67, 1885-1892.[CrossRef]
    [Google Scholar]
  13. Hu, H., Zhang, Q. & Ochi, K. ( 2002; ). Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding RNA polymerase β subunit) of Streptomyces lividans. J Bacteriol 184, 3984-3991.[CrossRef]
    [Google Scholar]
  14. Ishihama, A. ( 1988; ). Promoter selectivity of prokaryotic RNA polymerase. Trends Genet 4, 282-286.[CrossRef]
    [Google Scholar]
  15. Ishihama, A., Fujita, N., Igarashi, K. & Ueshima, R. ( 1990; ). Structural and functional modulation of Escherichia coli RNA polymerase. In Structure and Function of Nucleic Acids and Proteins , pp. 153-159. Edited by Y. Felicia, H. Wu & W. W. Cheng. New York:Raven.
  16. Jin, D. J. & Gross, C. A. ( 1988; ). Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol 202, 45-58.[CrossRef]
    [Google Scholar]
  17. Kawamoto, S., Zhang, D. & Ochi, K. ( 1997; ). Molecular analysis of the ribosomal L11 protein gene (rplK=relC) of Streptomyces griseus and identification of a deletion allele. Mol Gen Genet 255, 549-560.[CrossRef]
    [Google Scholar]
  18. Kieser, T., Bibb, M. J., Butter, M. J., Chater, K. F. & Hopwood, D. A. (2000). Practical Streptomyces Genetics. Norwich: John Innes Foundation.
  19. Leblond, P., Redenbach, M. & Cullum, J. ( 1993; ). Physical map of the Streptomyces lividans 66 genome and comparison with that of the related strain Streptomyces coelicolor A3(2). J Bacteriol 175, 3422-3429.
    [Google Scholar]
  20. Martin, J. F. & Liras, P. ( 1989; ). Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu Rev Microbiol 43, 173-206.[CrossRef]
    [Google Scholar]
  21. Ochi, K. ( 1987; ). Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus: significance of the stringent response (ppGpp) and GTP content in relation to A factor. J Bacteriol 169, 3608-3616.
    [Google Scholar]
  22. Ochi, K. ( 1989; ). The tsr gene-coding plasmid pIJ702 prevents thiopeptin from inhibiting ppGpp synthesis in Streptomyces lividans. FEMS Microbiol Lett 61, 219-224.[CrossRef]
    [Google Scholar]
  23. Ochi, K. ( 1990a; ). A relaxed (rel) mutant of Streptomyces coelicolor A3(2) with a missing ribosomal protein lacks the ability to accumulate ppGpp, A-factor and prodigiosin. J Gen Microbiol 136, 2405-2412.[CrossRef]
    [Google Scholar]
  24. Ochi, K. ( 1990b; ). Streptomyces relC mutants with an altered ribosomal protein ST-L11 and genetic analysis of a Streptomyces griseus relC mutant. J Bacteriol 172, 4008-4016.
    [Google Scholar]
  25. Ochi, K., Zhang, D., Kawamoto, S. & Hesketh, A. ( 1997; ). Molecular and functional analysis of the ribosomal L11 and S12 protein genes (rplK and rpsL) of Streptomyces coelicolor A3(2). Mol Gen Genet 256, 488-498.
    [Google Scholar]
  26. Reddy, P. S., Raghavan, A. & Chatterji, D. ( 1995; ). Evidence for a ppGpp-binding site on Escherichia coli RNA polymerase: proximity relationship with the rifampicin-binding domain. Mol Microbiol 15, 255-265.[CrossRef]
    [Google Scholar]
  27. Redenbach, M., Kieser, H. M., Denapaite, D., Eichner, A., Cullum, J., Kinashi, H. & Hopwood, D. A. ( 1996; ). A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21, 77-96.[CrossRef]
    [Google Scholar]
  28. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  29. Shima, J., Hesketh, A., Okamoto, S., Kawamoto, S. & Ochi, K. ( 1996; ). Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J Bacteriol 178, 7276-7284.
    [Google Scholar]
  30. Singer, M., Jin, D. J., Walter, W. A. & Gross, C. A. ( 1993; ). Genetic evidence for the interaction between cluster I and cluster III rifampicin resistant mutations. J Mol Biol 231, 1-5.[CrossRef]
    [Google Scholar]
  31. Takano, E., Gramajo, H. C., Strauch, E., Andres, N., White, J. & Bibb, M. J. ( 1992; ). Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol Microbiol 6, 2797-2804.[CrossRef]
    [Google Scholar]
  32. Toulokhonov, I. I., Shulgina, I. & Hernandez, V. J. ( 2001; ). Binding of the transcription effector ppGpp to Escherichia coli RNA polymerase is allosteric, modular, and occurs near the N terminus of the β′-subunit. J Biol Chem 276, 1220-1225.[CrossRef]
    [Google Scholar]
  33. Weisschuh, N., Fink, D., Vierling, S., Bibb, M. J., Wohlleben, W. & Engels, A. ( 2000; ). Transcriptional analysis of the gene for glutamine synthetase II and two upstream genes in Streptomyces coelicolor A3(2). Mol Gen Genet 264, 461-469.[CrossRef]
    [Google Scholar]
  34. Zhang, G., Campbell, E. A., Minakhin, L., Richter, C., Severinov, K. & Darst, S. A. ( 1999; ). Crystal structure of Thermus aquaticus core RNA polymerase at 3·3 Å resolution. Cell 98, 811-824.[CrossRef]
    [Google Scholar]
  35. Zhou, Y. N. & Jin, D. J. ( 1998; ). The rpoB mutants destabilizing initiation complexes at stringently controlled promoters behave like ‘stringent’ RNA polymerases in Escherichia coli. Proc Natl Acad Sci USA 95, 2908-2913.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3365
Loading
/content/journal/micro/10.1099/00221287-148-11-3365
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error