1887

Abstract

Laboratory-scale sequencing batch reactors (SBRs) as models for wastewater treatment processes were used to identify glycogen-accumulating organisms (GAOs), which are thought to be responsible for the deterioration of enhanced biological phosphorus removal (EBPR). The SBRs (called Q and T), operated under alternating anaerobic–aerobic conditions typical for EBPR, generated mixed microbial communities (sludges) demonstrating the GAO phenotype. Intracellular glycogen and poly-β-hydroxyalkanoate (PHA) transformations typical of efficient EBPR occurred but polyphosphate was not bioaccumulated and the sludges contained 18% P (sludge Q) and 15% P (sludge T). 16S rDNA clone libraries were prepared from DNA extracted from the Q and T sludges. Clone inserts were grouped into operational taxonomic units (OTUs) by restriction fragment length polymorphism banding profiles. OTU representatives were sequenced and phylogenetically analysed. The Q sludge library comprised four OTUs and all six determined sequences were 997% identical, forming a cluster in the γ- radiation. The T sludge library comprised eight OTUs and the majority of clones were subphylum 4 (49% of the library) and candidate phylum OP10 (39% of the library). One OTU (two clones, of which one was sequenced) was in the γ- radiation with 95% sequence identity to the Q sludge clones. Oligonucleotide probes (called GAOQ431 and GAOQ989) were designed from the γ- clone sequences for use in fluorescence hybridization (FISH); 92% of the Q sludge bacteria and 28% of the T sludge bacteria bound these probes in FISH. FISH and post-FISH chemical staining for PHA were used to determine that bacteria from a novel γ- cluster were phenotypically GAOs in one laboratory-scale SBR and two full-scale wastewater treatment plants. It is suggested that the GAOs from the novel cluster in the γ- radiation be named ‘ Competibacter phosphatis’.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3353
2002-11-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483353a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3353&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402.[CrossRef]
    [Google Scholar]
  2. Amann, R. I. (1995). In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual, pp. MMEM-3.3.6/1–MMEM-3.3.6/15. Edited by A. D. L. Akkermans, J. D. van Elsas & F. J. de Bruijn. London: Kluwer.
  3. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R. & Stahl, D. A. ( 1990; ). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 1919-1925.
    [Google Scholar]
  4. Blackall, L. L. ( 1994; ). Molecular identification of activated sludge foaming bacteria. Water Sci Technol 29(7), 35–42.
    [Google Scholar]
  5. Bond, P. L., Keller, J. & Blackall, L. L. ( 1998; ). Characterisation of enhanced biological phosphorus removal activated sludges with dissimilar phosphorus removal performance. Water Sci Technol 37(4–5), 567–571.
    [Google Scholar]
  6. Bond, P. L., Erhart, R., Wagner, M., Keller, J. & Blackall, L. L. ( 1999a; ). Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. Appl Environ Microbiol 65, 4077-4084.
    [Google Scholar]
  7. Bond, P. L., Keller, J. & Blackall, L. L. ( 1999; b). Bio-P and non-bio-P bacteria identification by a novel microbial approach. Water Sci Technol 39(6), 13–20.
    [Google Scholar]
  8. Bouchez, T., Patureau, D., Dabert, P., Juretschko, S., Dore, J., Delgenes, P., Moletta, R. & Wagner, M. ( 2000; ). Ecological study of a bioaugmentation failure. Environ Microbiol 2, 179-190.[CrossRef]
    [Google Scholar]
  9. Brosius, J., Dull, T. L., Steeter, D. D. & Noller, H. F. ( 1981; ). Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148, 107-127.[CrossRef]
    [Google Scholar]
  10. Burrell, P. C., Keller, J. & Blackall, L. L. ( 1998; ). Microbiology of a nitrite-oxidizing bioreactor. Appl Environ Microbiol 64, 1878-1883.
    [Google Scholar]
  11. Crocetti, G. R., Hugenholtz, P., Bond, P. L., Schuler, A., Keller, J., Jenkins, D. & Blackall, L. L. ( 2000; ). Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl Environ Microbiol 66, 1175-1182.[CrossRef]
    [Google Scholar]
  12. Dabert, P., Sialve, B., Delgenès, J.-P., Moletta, R. & Godon, J.-J. ( 2001; ). Characterisation of the microbial 16S rDNA diversity of an aerobic phosphorus-removal ecosystem and monitoring of its transition to nitrate respiration. Appl Microbiol Biotechnol 55, 500-509.[CrossRef]
    [Google Scholar]
  13. Daims, H., Bruhl, A., Amann, R., Schleifer, K. H. & Wagner, M. ( 1999; ). The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22, 434-444.[CrossRef]
    [Google Scholar]
  14. Dalevi, D., Hugenholtz, P. & Blackall, L. L. ( 2001; ). A systematic approach to resolving division-level phylogenetic relationships using 16S rDNA data. Int J Syst Evol Microbiol 51, 385-391.
    [Google Scholar]
  15. Fukase, T., Shibata, M. & Miyaji, Y. ( 1985; ). The role of an anaerobic stage in biological phosphorus removal. Water Sci Technol 17(2–3), 69–80.
    [Google Scholar]
  16. Hesselmann, R. P. X., Werlen, C., Hahn, D., van der Meer, J. R. & Zehnder, A. J. B. ( 1999; ). Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst Appl Microbiol 22, 454-465.[CrossRef]
    [Google Scholar]
  17. Hugenholtz, P., Goebel, B. M. & Pace, N. R. ( 1998; ). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180, 4765-4774.
    [Google Scholar]
  18. Hugenholtz, P., Tyson, G. W. & Blackall, L. L. ( 2001a; ). Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence in situ hybridisation. In Gene Probes: Principles and Protocols , pp. 29-42. Edited by M. Aquino de Muro & R. Rapley. London:Humana Press.
  19. Hugenholtz, P., Tyson, G. W., Webb, R. I., Wagner, A. M. & Blackall, L. L. ( 2001b; ). Investigation of candidate division TM7, a recently recognized major lineage of the domain Bacteria with no known pure-culture representatives. Appl Environ Microbiol 67, 411-419.[CrossRef]
    [Google Scholar]
  20. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics , pp. 115-175. Edited by E. Stackebrandt & M. Goodfellow. Chichester:Wiley.
  21. Liu, W.-T., Linning, K. D., Nakamura, K., Mino, T., Matsuo, T. & Forney, L. J. ( 2000; ). Microbial community changes in biological phosphate-removal systems on altering sludge phosphorus content. Microbiology 146, 1099-1107.
    [Google Scholar]
  22. Liu, W.-T., Nielsen, A. T., Wu, J.-H., Tsai, C.-S., Matsuo, Y. & Molin, S. ( 2001; ). In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Environ Microbiol 3, 110-122.[CrossRef]
    [Google Scholar]
  23. Manz, W., Amann, R., Ludwig, W., Wagner, M. & Schleifer, K.-H. ( 1992; ). Phylogenetic oligonucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15, 593-600.[CrossRef]
    [Google Scholar]
  24. Manz, W., Amann, R., Ludwig, W., Vancanneyt, M. & Schleifer, K. H. ( 1996; ). Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga–Flavobacter–Bacteroides in the natural environment. Microbiology 142, 1097-1106.[CrossRef]
    [Google Scholar]
  25. Mino, T., Liu, W. T., Kurisu, F. & Matsuo, T. ( 1995; ). Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes. Water Sci Technol 31(2), 25–34.
    [Google Scholar]
  26. Mino, T., van Loosdrecht, M. C. M. & Heijnen, J. J. ( 1998; ). Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res 32, 3193-3207.[CrossRef]
    [Google Scholar]
  27. Murray, R. G. E., Doetsch, R. N. & Robinow, C. F. ( 1994; ). Determinative and cytological microscopy. In Methods for General and Molecular Bacteriology , pp. 21-36. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC:American Society for Microbiology.
  28. Nielsen, A. T., Liu, W.-T., Filipe, C., Grady, L., Molin, S. & Stahl, D. A. ( 1999; ). Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol 65, 1251-1258.
    [Google Scholar]
  29. Ostle, A. G. & Holt, J. G. ( 1982; ). Nile Blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44, 238-241.
    [Google Scholar]
  30. Roller, C., Wagner, M., Amann, R., Ludwig, W. & Schleifer, K.-H. ( 1994; ). In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNA-targeted oligonucleotides. Microbiology 140, 2849-2858.[CrossRef]
    [Google Scholar]
  31. Satoh, H., Mino, T. & Matsuo, T. ( 1994; ). Deterioration of enhanced biological phosphorus removal by the domination of microorganisms without polyphosphate accumulation. Water Sci Technol 30(6), 203–211.
    [Google Scholar]
  32. Schmid, M., Twachtmann, U., Klein, M., Strous, M., Juretschko, S., Jetten, M. S. M., Metzger, J. W., Schleifer, K.-H. & Wagner, M. ( 2000; ). Molecular evidence for genus-level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 23, 93-106.[CrossRef]
    [Google Scholar]
  33. Smolders, G. J. F. (1995). A metabolic model of the biological phosphorus removal – stoichiometry, kinetics and dynamic behaviour. PhD thesis, Delft University of Technology, The Netherlands.
  34. van Loosdrecht, M. C. M., Hooijmans, C. M., Brdjanovic, D. & Heijnen, J. J. ( 1997a; ). Biological phosphate removal processes. Appl Microbiol Biotechnol 48, 289-296.[CrossRef]
    [Google Scholar]
  35. van Loosdrecht, M. C. M., Smolders, G. J., Kuba, T. & Heijnen, J. J. ( 1997b; ). Metabolism of microorganisms responsible for enhanced biological phosphorus removal from wastewater. Antonie van Leeuwenhoek 71, 109-116.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3353
Loading
/content/journal/micro/10.1099/00221287-148-11-3353
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error