1887
Preview this article:
Zoom in
Zoomout

Protein transport in the halophilic archaeon sp. NRC-1: a major role for the twin-arginine translocation pathway?, Page 1 of 1

| /docserver/preview/fulltext/micro/148/11/1483335a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3335
2002-11-01
2020-09-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483335a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3335&mimeType=html&fmt=ahah

References

  1. Akita M, Sasaki S, Matsuyama S., Mizushima S. 1990; SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in Escherichia coli . J Biol Chem265:8164–8169
    [Google Scholar]
  2. Albers S. V., Driessen A. M. 2002; Signal peptides of secreted proteins of the archaeon Sulfolobus solfataricus : a genomic survey. Arch Microbiol177:209–216
    [Google Scholar]
  3. Altschul S. F, Madden T. L, Schäffer A. A, Zhang J, Zhang Z, Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  4. Angelini S, Moreno R, Gouffi K, Santini C, Yamagishi A, Berenguer J., Wu L. 2001; Export of Thermus thermophilus alkaline phosphatase via the twin-arginine translocation pathway in Escherichia coli . FEBS Lett506:103–107
    [Google Scholar]
  5. Arkowitz R. A., Wickner W. 1994; SecD and SecF are required for the proton electrochemical gradient stimulation of preprotein translocation. EMBO J13:954–963
    [Google Scholar]
  6. Beck K, Eisner G, Trescher D, Dalbey R. E, Brunner J., Muller M. 2001; YidC, an assembly site for polytopic Escherichia coli membrane proteins located in immediate proximity to the SecYE translocon and lipids. EMBO Rep2:709–714
    [Google Scholar]
  7. Berks B. C. 1996; A common export pathway for proteins binding complex redox cofactors?. Mol Microbiol22:393–404
    [Google Scholar]
  8. Berks B. C, Sargent F., Palmer T. 2000; The Tat protein export pathway. Mol Microbiol35:260–274
    [Google Scholar]
  9. Bolhuis A, Broekhuizen C. P, Sorokin A, van Roosmalen M. L, Venema G, Bron S, Quax W. J., van Dijl J. M. 1998; SecDF of Bacillus subtilis , a molecular siamese twin required for the efficient secretion of proteins. J Biol Chem273:21217–21224
    [Google Scholar]
  10. Bolhuis A, Mathers J. E, Thomas J. D, Barrett C. M., Robinson C. 2001; TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli . J Biol Chem276:20213–20219
    [Google Scholar]
  11. Briggs M. S, Cornell D. G, Dluhy R. A., Gierasch L. M. 1986; Conformations of signal peptides induced by lipids suggest initial steps in protein export. Science233:206–208
    [Google Scholar]
  12. Chaddock A. M, Mant A, Karnauchov I, Brink S, Herrmann R. G, Klosgen R. B., Robinson C. 1995; A new type of signal peptide: central role of a twin-arginine motif in transfer signals for the delta pH-dependent thylakoidal protein translocase. EMBO J14:2715–2722
    [Google Scholar]
  13. Cristóbal S, de Gier J. W, Nielsen H., von Heijne G. 1999; Competition between Sec- and Tat-dependent protein translocation in Escherichia coli . EMBO J18:2982–2990
    [Google Scholar]
  14. Dalbey R. E., Kuhn A. 2000; Evolutionarily related insertion pathways of bacterial, mitochondrial, and thylakoid membrane proteins. Annu Rev Cell Dev Biol16:51–87
    [Google Scholar]
  15. Dalbey R. E, Lively M. O, Bron S., van Dijl J. M. 1997; The chemistry and enzymology of the type I signal peptidases. Protein Sci6:1129–1138
    [Google Scholar]
  16. Dale H, Angevine C. M., Krebs M. P. 2000; Ordered membrane insertion of an archaeal opsin in vivo . Proc Natl Acad Sci USA97:7847–7852
    [Google Scholar]
  17. de Vrije G. J, Batenburg A. M, Killian J. A., de Kruijff B. 1990; Lipid involvement in protein translocation in Escherichia coli . Mol Microbiol4:143–150
    [Google Scholar]
  18. Duong F., Wickner W. 1997; The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. EMBO J16:4871–4879
    [Google Scholar]
  19. Economou A. 1998; Bacterial preprotein translocase: mechanism and conformational dynamics of a processive enzyme. Mol Microbiol27:511–518
    [Google Scholar]
  20. Eichler J. 2000; Archaeal protein translocation crossing membranes in the third domain of life. Eur J Biochem267:3402–3412
    [Google Scholar]
  21. Eichler J., Moll R. 2001; The signal recognition particle of Archaea. Trends Microbiol9:130–136
    [Google Scholar]
  22. Elcock A. H., McCammon J. A. 1998; Electrostatic contributions to the stability of halophilic proteins. J Mol Biol280:731–748
    [Google Scholar]
  23. Evans E. A, Gilmore R., Blobel G. 1986; Purification of microsomal signal peptidase as a complex. Proc Natl Acad Sci USA83:581–585
    [Google Scholar]
  24. Forest K. T., Tainer J. A. 1997; Type-4 pilus-structure: outside to inside and top to bottom – a minireview. Gene192:165–169
    [Google Scholar]
  25. Görlich D., Rapoport T. A. 1993; Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell75:615–630
    [Google Scholar]
  26. Hayashi S., Wu H. C. 1990; Lipoproteins in bacteria. J Bioenerg Biomembr22:451–471
    [Google Scholar]
  27. Hinsley A. P, Stanley N. R, Palmer T., Berks B. C. 2001; A naturally occurring bacterial Tat signal peptide lacking one of the ‘‘invariant’’ arginine residues of the consensus targeting motif. FEBS Lett497:45–49
    [Google Scholar]
  28. Johnson A. E., Waes M. A. 1999; The translocon: a dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol15:799–842
    [Google Scholar]
  29. Keenan R. J, Freymann D. M, Stroud R. M., Walter P. 2001; The signal recognition particle. Annu Rev Biochem70:755–775
    [Google Scholar]
  30. Kennedy S. P, Ng W. V, Salzberg S. L, Hood L., DasSarma S. 2001; Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res11:1641–1650
    [Google Scholar]
  31. Kikuchi A, Sagami H., Ogura K. 1999; Evidence for covalent attachment of diphytanylglyceryl phosphate to the cell-surface glycoprotein of Halobacterium halobium . J Biol Chem274:18011–18016
    [Google Scholar]
  32. Kinch L. N, Saier M. H. Jr, Grishin N. V. 2002; Sec61β – a component of the archaeal protein secretory system. Trends Biochem Sci27:170–171
    [Google Scholar]
  33. Konrad Z., Eichler J. 2002; Lipid modification of proteins in archaea: attachment of a mevalonic acid-based lipid moiety to the S-layer glycoprotein of Haloferax volcanii follows protein translocation. J Biol Chem in press
    [Google Scholar]
  34. Lanyi J. K. 1974; Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev38:272–290
    [Google Scholar]
  35. Lechner J., Sumper M. 1987; The primary structure of a procaryotic glycoprotein. Cloning and sequencing of the cell surface glycoprotein gene of halobacteria. J Biol Chem262:9724–9729
    [Google Scholar]
  36. Lory S. 1994; Leader peptidase of the type IV prepilins and related proteins. In Signal Peptidases pp17–29 Edited by von Heijne G.. Austin, TX: R. G. Landes;
    [Google Scholar]
  37. Madern D, Ebel C., Zaccai G. 2000; Halophilic adaptation of enzymes. Extremophiles4:91–98
    [Google Scholar]
  38. Manting E. H., Driessen A. J. M. 2000; Escherichia coli translocase: unravelling of a molecular machine. Mol Microbiol37:226–238
    [Google Scholar]
  39. Matsuyama S, Fujita Y., Mizushima S. 1993; SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli . EMBO J12:265–270
    [Google Scholar]
  40. Mattar S, Scharf B, Kent S. B, Rodewald K, Oesterhelt D., Engelhard M. 1994; The primary structure of halocyanin, an archaeal blue copper protein, predicts a lipid anchor for membrane fixation. J Biol Chem269:14939–14945
    [Google Scholar]
  41. Michiels J, Dirix G, Vanderleyden J., Xi C. 2001; Processing and export of peptide pheromones and bacteriocins in Gram-negative bacteria. Trends Microbiol9:164–168
    [Google Scholar]
  42. Mori H., Cline K. 2002; A twin-arginine signal peptide and the pH gradient trigger reversible assembly of the thylakoid ΔpH/Tat translocase. J Cell Biol157:205–210
    [Google Scholar]
  43. Neumann-Haefelin C, Schafer U, Muller M., Koch H. G. 2000; SRP-dependent co-translational targeting and SecA-dependent translocation analyzed as individual steps in the export of a bacterial protein. EMBO J19:6419–6426
    [Google Scholar]
  44. Ng W. V, Kennedy S. P, Mahairas G. G.. 40 other authors 2000; Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci USA97:12176–12181
    [Google Scholar]
  45. Nguyen T. H, Law D. T., Williams D. B. 1991; Binding protein BiP is required for translocation of secretory proteins into the endoplasmic reticulum in Saccharomyces cerevisiae . Proc Natl Acad Sci USA88:1565–1569
    [Google Scholar]
  46. Nielsen H, Engelbrecht J, Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng10:1–6
    [Google Scholar]
  47. Nielsen H, Brunak S., von Heijne G. 1999; Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng12:3–9
    [Google Scholar]
  48. Nouwen N, van der Laan M., Driessen A. J. 2001; SecDFyajC is not required for the maintenance of the proton motive force. FEBS Lett508:103–106
    [Google Scholar]
  49. Peck R. F, Dassarma S., Krebs M. P. 2000; Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker. Mol Microbiol35:667–676
    [Google Scholar]
  50. Phoenix D. A, Kusters R, Hikita C, Mizushima S., de Kruijff B. 1993; OmpF-Lpp signal sequence mutants with varying charge hydrophobicity ratios provide evidence for a phosphatidylglycerol-signal sequence interaction during protein translocation across the Escherichia coli inner membrane. J Biol Chem268:17069–17073
    [Google Scholar]
  51. Pohlschröder M, Prinz W. A, Hartmann E., Beckwith J. 1997; Protein translocation in the three domains of life: variations on a theme. Cell91:563–566
    [Google Scholar]
  52. Robinson C., Bolhuis A. 2001; Protein targeting by the twin-arginine translocation pathway. Nat Rev Mol Cell Biol2:350–356
    [Google Scholar]
  53. Rose R. W., Pohlschröder M. J. 2002; In vivo analysis of an essential archaeal signal recognition particle in its native host. J Bacteriol84:3260–3267
    [Google Scholar]
  54. Rose R. W, Brüser T, Kissinger J. C., Pohlschöder M. 2002; Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol45:943–950
    [Google Scholar]
  55. Samuelson J. C, Chen M, Jiang F, Moller I, Wiedmann M, Kuhn A, Phillips G. J., Dalbey R. E. 2000; YidC mediates membrane protein insertion in bacteria. Nature406:637–641
    [Google Scholar]
  56. Schatz G., Dobberstein B. 1996; Common principles of protein translocation across membranes. Science271:1519–1526
    [Google Scholar]
  57. Scotti P. A, Urbanus M. L, Brunner J, de Gier J. W, von Heijne G, van der Does C, Driessen A. J, Oudega B., Luirink J. 2000; YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J19:542–549
    [Google Scholar]
  58. Seehra J. S., Khorana H. G. 1984; Bacteriorhodopsin precursor. Characterization and its integration into the purple membrane. J Biol Chem259:4187–4193
    [Google Scholar]
  59. Seluanov A., Bibi E. 1997; FtsY, the prokaryotic signal recognition particle receptor homologue, is essential for biogenesis of membrane proteins. J Biol Chem272:2053–2055
    [Google Scholar]
  60. Settles A. M, Yonetani A, Baron A, Bush D. R, Cline K., Martienssen R. 1997; Sec-independent protein translocation by the maize Hcf106 protein. Science278:1467–1470
    [Google Scholar]
  61. Sowers K. R., Schreier H. J. 1999; Gene transfer systems for the archaea. Trends Microbiol7:212–219
    [Google Scholar]
  62. Stanley N. R, Palmer T., Berks B. C. 2000; The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli . J Biol Chem275:11591–11596
    [Google Scholar]
  63. Thomas N. A, Bardy S. L., Jarell K. F. 2001; The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiol Rev25:147–174
    [Google Scholar]
  64. Tjalsma H, Bolhuis A, van Roosmalen M. L. 7 other authors 1998; Functional analysis of the secretory precursor processing machinery of Bacillus subtilis ; identification of a eubacterial homologue of archaeal and eukaryotic signal peptidases. Genes Dev12:2318–2331
    [Google Scholar]
  65. Tjalsma H, Bolhuis A, Jongbloed J. D, Bron S., van Dijl J. M. 2000; Signal peptide-dependent protein transport in Bacillus subtilis : a genome-based survey of the secretome. Microbiol Mol Biol Rev64:515–547
    [Google Scholar]
  66. Tjalsma H, Zanen G, Bron S., van Dijl J. M. 2001; The eubacterial lipoprotein-specific (type II) signal peptidase. In The Enzymesvol. XXIICo- and Post Translational Proteolysis of Proteins pp3–23 Edited by Dalbey R. E., Sigman D. S.. San Diego, CA: Academic Press;
    [Google Scholar]
  67. Tseng T. T, Gratwick K. S, Kollman J, Park D, Nies D. H, Goffeau A., Saier M. H. Jr. 1999; The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol1:107–125
    [Google Scholar]
  68. Ulbrandt N. D, Newitt J. A., Bernstein H. D. 1997; The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell88:187–196
    [Google Scholar]
  69. van de Vossenberg J. L, Driessen A. J. M., Konings W. N. 1998; The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles2:163–170
    [Google Scholar]
  70. Voigt S, Jungnickel B, Hartmann E., Rapoport T. A. 1996; Signal sequence-dependent function of the TRAM protein during early phases of protein transport across the endoplasmic reticulum membrane. J Cell Biol134:25–35
    [Google Scholar]
  71. von Heijne G. 1984; How signal sequences maintain cleavage specificity. J Mol Biol173:243–251
    [Google Scholar]
  72. von Heijne G. 1989; The structure of signal peptides from bacterial lipoproteins. Protein Eng2:531–534
    [Google Scholar]
  73. von Heijne G. 1990; The signal peptide. J Membr Biol115:195–201
    [Google Scholar]
  74. Woese C. R, Kandler O., Wheelis M. L. 1990; Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA87:4576–4579
    [Google Scholar]
  75. Xu Z. J, Moffett D. B, Peters T. R, Smith L. D, Perry B. P, Whitmer J, Stokke S. A., Teintze M. 1995; The role of the leader sequence coding region in expression and assembly of bacteriorhodopsin. J Biol Chem270:24858–24863
    [Google Scholar]
  76. Yen M. R, Tseng Y. H, Nguyen E. H, Wu L. F., Saier M. H. Jr. 2002; Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system. Arch Microbiol177:441–450
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3335
Loading
/content/journal/micro/10.1099/00221287-148-11-3335
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error