1887

Abstract

The coumarin antibiotic coumermycin A contains at least eight methyl groups, presumably derived from -adenosylmethionine. Two putative methyltransferase genes, and , of the coumermycin A biosynthetic gene cluster were inactivated by in-frame deletion. In the resulting mutants, coumermycin A production was abolished. New coumermycin derivatives were accumulated instead, and were identified by HPLC-MS using selected reaction monitoring via electrospray ionization. mutants accumulated a coumermycin derivative lacking the methyl groups at C-8 of the characteristic aminocoumarin rings, whereas in the mutant a coumermycin derivative lacking the methyl groups at the 4-hydroxyl groups of the two deoxysugar moieties was identified. These results provided evidence that encodes a -methyltransferase responsible for the transfer of a methyl group to C-8 of the aminocoumarin ring, and an -methyltransferase for methylation of 4-OH of the sugar in the biosynthesis of coumermycin A, respectively. -methylation of the aminocoumarin ring is considered as an early step of coumermycin biosynthesis. Nevertheless, the intermediates with the non-methylated aminocoumarin ring were accepted by the enzymes catalysing the subsequent steps of the pathway. The new, demethylated secondary metabolites were produced in an amount at least as high as that of coumermycin A in the wild-type.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-10-3317
2002-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/10/1483317a.html?itemId=/content/journal/micro/10.1099/00221287-148-10-3317&mimeType=html&fmt=ahah

References

  1. Ali J. A, Jackson A. P, Howells A. J., Maxwell A. 1993; The 43-kilodalton N-terminal fragment of the DNA gyrase B protein hydrolyzes ATP and binds coumarin drugs. Biochemistry 32:2717–2724
    [Google Scholar]
  2. Bate N, Butler A. R, Smith I. P., Cundliffe E. 2000; The mycarose-biosynthetic genes of Streptomyces fradiae , producer of tylosin. Microbiology 146:139–146
    [Google Scholar]
  3. Berger J., Batcho A. D. 1978; Coumarin-glycoside antibiotics. J Chromatogr Libr 15:101–158
    [Google Scholar]
  4. Bierman M, Logan R, O’Brien K, Seno E. T, Rao R. N., Schoner B. E. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49
    [Google Scholar]
  5. Birch A. J, Cameron D. W, Holloway P. W., Rickards R. W. 1960; Further examples of biological C-methylation. Novobiocin and actinomycin. Tetrahedron Lett26–31
    [Google Scholar]
  6. Bunton C. A, Kenner G. W, Robinson M. J. T., Webster B. R. 1963; Experiments related to the biosynthesis of novobiocin and other coumarins. Tetrahedron 19:1001–1010
    [Google Scholar]
  7. Chen H., Walsh C. T. 2001; Coumarin formation in novobiocin biosynthesis: beta-hydroxylation of the aminoacyl enzyme tyrosyl-S-NovH by a cytochrome P450 NovI. Chem Biol 8:301–312
    [Google Scholar]
  8. Claridge C. A, Elander R. P., Price K. E. 1984; The coumermycins: properties, biosynthesis, and fermentation. Drugs Pharm Sci 22:413–425
    [Google Scholar]
  9. Fouces R, Mellado E, Dı́ez B., Barredo J. L. 1999; The tylosin biosynthetic cluster from Streptomyces fradiae : genetic organization of the left region. Microbiology 145:855–868
    [Google Scholar]
  10. Gaisser S, Böhm G. A, Doumith M, Raynal M. C, Dhillon N, Cortés J., Leadlay P. F. 1998; Analysis of eryBI , eryBIII and eryBVII from the erythromycin biosynthetic gene cluster in Saccharopolyspora erythraea . Mol Gen Genet 258:78–88
    [Google Scholar]
  11. Galagan J. E, Nusbaum C, Roy A. 52 other authors 2002; The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542
    [Google Scholar]
  12. González A, Remsing L. L, Lombó F. 7 other authors 2001; The mtm VUC genes of the mithramycin gene cluster in Streptomyces argillaceus are involved in the biosynthesis of the sugar moieties. Mol Gen Genet 264:827–835
    [Google Scholar]
  13. Hooper D. C, Wolfson J. S, McHugh G. L, Winters M. B., Swartz M. N. 1982; Effects of novobiocin, coumermycin A1, clorobiocin, and their analogs on Escherichia coli DNA gyrase and bacterial growth. Antimicrob Agents Chemother 22:662–671
    [Google Scholar]
  14. Inouye M, Suzuki H, Takada Y, Muto N, Horinouchi S., Beppu T. 1994; A gene encoding mycinamicin III O-methyltransferase from Micromonospora griseorubida . Gene 141:121–124
    [Google Scholar]
  15. Kagan R. M., Clarke S. 1994; Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch Biochem Biophys 310:417–427
    [Google Scholar]
  16. Kieser T, Bibb M. J, Buttner M. J, Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  17. Kominek L. A., Sebek O. K. 1974; Biosynthesis of novobiocin and related coumarin antibiotics. Dev Ind Microbiol 15:60–69
    [Google Scholar]
  18. Lewis R. J, Singh O. M, Smith C. V, Skarzynski T, Maxwell A, Wonacott A. J., Wigley D. B. 1996; The nature of inhibition of DNA gyrase by the coumarins and the cyclothialidines revealed by X-ray crystallography. EMBO J 15:1412–1420
    [Google Scholar]
  19. Li S.-M, Hennig S., Heide L. 1998; Biosynthesis of the dimethylallyl moiety of novobiocin via a non-mevalonate pathway. Tetrahedron Lett 39:2717–2720
    [Google Scholar]
  20. MacNeil D. J, Gewain K. M, Ruby C. L, Dezeny G, Gibbons P. H., MacNeil T. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68
    [Google Scholar]
  21. Maxwell A. 1993; The interaction between coumarin drugs and DNA gyrase. Mol Microbiol 9:681–686
    [Google Scholar]
  22. Maxwell A. 1999; DNA gyrase as a drug target. Biochem Soc Trans 27:48–53
    [Google Scholar]
  23. Oh S. H., Chater K. F. 1997; Denaturation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): possible relevance to other organisms. J Bacteriol 179:122–127
    [Google Scholar]
  24. Patallo E. P, Blanco G, Fischer C, Braña A. F, Rohr J, Méndez C., Salas J. A. 2001; Deoxysugar methylation during biosynthesis of the antitumor polyketide elloramycin by Streptomyces olivaceus . Characterization of three methyltransferase genes. J Biol Chem 276:18765–18774
    [Google Scholar]
  25. Peng H., Marians K. J. 1993; Escherichia coli topoisomerase IV. Purification, characterization, subunit structure, and subunit interactions. J Biol Chem 268:24481–24490
    [Google Scholar]
  26. Ryan M. J. 1979; Novobiocin and coumermycin A1 . In Antibiotics, vol. 5, part 1 . Mechanism of Action of Antibacterial Agents pp 214–234 Edited by Hahn F. E. Berlin, Heidelberg, New York: Springer-Verlag;
    [Google Scholar]
  27. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Sasaki T, Igarashi Y, Saito N., Furumai T. 2001; TPU-0031-A and B, new antibiotics of the novobiocin group produced by Streptomyces sp. TP-A0556. J Antibiot 54:441–447
    [Google Scholar]
  29. Scannell J., Kong Y. L. 1969; Biosynthesis of coumermycin A1: incorporation of l-proline into the pyrrole groups. Antimicrob Agents Chemother 9:139–143
    [Google Scholar]
  30. Sofia H. J, Chen G, Hetzler B. G, Reyes-Spindola J. F., Miller N. E. 2001; Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res 29:1097–1106
    [Google Scholar]
  31. Steffensky M, Li S. M., Heide L. 2000a; Cloning, overexpression, and purification of novobiocic acid synthetase from Streptomyces spheroides NCIMB 11891. J Biol Chem 275:21754–21760
    [Google Scholar]
  32. Steffensky M, Mühlenweg A, Wang Z. X, Li S. M., Heide L. 2000b; Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891. Antimicrob Agents Chemother 44:1214–1222
    [Google Scholar]
  33. Tang L., McDaniel R. 2001; Construction of desosamine containing polyketide libraries using a glycosyltransferase with broad substrate specificity. Chem Biol 8:547–555
    [Google Scholar]
  34. Theobald U, Schimana J., Fiedler H. P. 2000; Microbial growth and production kinetics of Streptomyces antibioticus Tü 6040. Antonie Leeuwenhoek 78:307–313
    [Google Scholar]
  35. Tsai F. T, Singh O. M, Skarzynski T. 9 other authors 1997; The high-resolution crystal structure of a 24-kDa gyrase B fragment from E. coli complexed with one of the most potent coumarin inhibitors, clorobiocin. Proteins 28:41–52
    [Google Scholar]
  36. Wang Z. X, Li S. M., Heide L. 2000; Identification of the coumermycin A1 biosynthetic gene cluster of Streptomyces rishiriensis DSM 40489. Antimicrob Agents Chemother 44:3040–3048
    [Google Scholar]
  37. Weitnauer G, Gaisser S, Kellenberger L, Leadlay P. F., Bechthold A. 2002; Analysis of a C-methyltransferase gene ( aviG1 ) involved in avilamycin biosynthesis in Streptomyces viridochromogenes Tü57 and complementation of a Saccharopolyspora erythraea eryBIII mutant by aviG1 . Microbiology 148:373–379
    [Google Scholar]
  38. Yoon Y. J, Beck B. J, Kim B. S, Kang H. Y, Reynolds K. A., Sherman D. H. 2002; Generation of multiple bioactive macrolides by hybrid modular polyketide synthases in Streptomyces venezuelae . Chem Biol 9:203–214
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-10-3317
Loading
/content/journal/micro/10.1099/00221287-148-10-3317
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error