1887

Abstract

Single-stranded-DNA-binding proteins (SSBs) play essential roles in DNA replication, recombination and repair in bacteria, archaea and eukarya. This paper reports the identification and characterization of the SSB-like proteins of the thermophilic bacteria and . These proteins (SSB and SSB), in contrast to their known counterparts from mesophilic bacteria, archaea and eukarya, are homodimers, and each monomer contains two ssDNA-binding domains with a conserved OB (oligonucleotide/oligosaccharide-binding) fold, as deduced from the sequence analysis. The N-terminal domain is located in the region from amino acid 1 to 123 and the C-terminal domain is located between amino acids 124 and 264 or 266 in SSB and SSB, respectively. Purified SSB or SSB binds only to ssDNA and with high affinity. The binding site size for SSB and SSB protein corresponds to 30–35 nucleotides. It is concluded that the SSBs of thermophilic and mesophilic bacteria, archaea and eukarya share a common core ssDNA-binding domain. This ssDNA-binding domain was presumably present in the common ancestor to all three major branches of life.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-10-3307
2002-10-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/10/1483307a.html?itemId=/content/journal/micro/10.1099/00221287-148-10-3307&mimeType=html&fmt=ahah

References

  1. Alani, E., Thresher, R., Griffith, J. D. & Kolodner, R. D. ( 1992; ). Characterization of DNA-binding and strand-exchange stimulation properties of y-RPA, a yeast single-strand-DNA-binding protein. J Mol Biol 227, 54-71.[CrossRef]
    [Google Scholar]
  2. Atrazhev, A., Zhang, S. & Grosse, F. ( 1992; ). Single-stranded DNA binding protein from calf thymus. Purification, properties, and stimulation of the homologous DNA-polymerase–α-primase complex. Eur J Biochem 210, 855-865.[CrossRef]
    [Google Scholar]
  3. Augustyns, K., van Aerschot, A., van Shepdael, A., Urbanke, C. & Herdevijn, P. ( 1991; ). Influence of the incorporation of (S)-9-(3, 4-dihydroxybutyl)adenine on the enzymatic stability and base-pairing properties of oligodeoxynucleotides. Nucleic Acids Res 19, 2587-2593.[CrossRef]
    [Google Scholar]
  4. Bochkarev, A., Pfuetzner, R. A., Edwards, A. M. & Frappier, L. ( 1997; ). Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385, 176-181.[CrossRef]
    [Google Scholar]
  5. Bochkarev, A., Bochkareva, E., Frappier, L. & Edwards, A. M. ( 1999; ). The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J 18, 4498-4504.[CrossRef]
    [Google Scholar]
  6. Bochkareva, E., Korolev, S. & Bochkarev, A. ( 2000; ). The role for zinc in replication protein A. J Biol Chem 275, 27332-27338.
    [Google Scholar]
  7. Brill, S. J. & Stillman, B. ( 1991; ). Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev 5, 1589-1600.[CrossRef]
    [Google Scholar]
  8. Carlini, L., Curth, U., Kindler, B., Urbanke, C. & Porter, R. D. ( 1998; ). Identification of amino acids stabilizing the tetramerization of the single stranded DNA binding protein from Escherichia coli. FEBS Lett 430, 197-200.[CrossRef]
    [Google Scholar]
  9. Curth, U., Urbanke, C., Greipel, J., Gerberding, H., Tiranti, V. & Zeviani, M. ( 1994; ). Single-stranded-DNA-binding proteins from human mitochondria and Escherichia coli have analogous physicochemical properties. Eur J Biochem 221, 435-443.[CrossRef]
    [Google Scholar]
  10. Curth, U., Genschel, J., Urbanke, C. & Greipel, J. ( 1996; ). In vitro and in vivo function of the C-terminus of Escherichia coli single-stranded DNA binding protein. Nucleic Acids Res 24, 2706-2711.[CrossRef]
    [Google Scholar]
  11. Dąbrowski, S. & Kur, J. ( 1999; ). Cloning and overexpression and purification of his-tagged SSB from E. coli and application in PCR. Protein Expr Purif 16, 96-102.[CrossRef]
    [Google Scholar]
  12. de Vries, J. & Wackernagel, W. ( 1993; ). Cloning and sequencing of the Serratia marcescens gene encoding a single-stranded DNA-binding protein (SSB) and its promoter region. Gene 127, 39-45.[CrossRef]
    [Google Scholar]
  13. de Vries, J. & Wackernagel, W. ( 1994; ). Cloning and sequencing of the Proteus mirabilis gene for a single-stranded DNA-binding protein (SSB) and complementation of Escherichia coli ssb point and deletion mutations. Microbiology 140, 889-895.[CrossRef]
    [Google Scholar]
  14. Genschel, J., Litz, L., Thole, H., Roemling, U. & Urbanke, C. ( 1996; ). Isolation, sequencing and overproduction of the single-stranded DNA binding protein from Pseudomonas aeruginosa PAO. Gene 182, 137-143.[CrossRef]
    [Google Scholar]
  15. Gomes, X. V. & Wold, M. S. ( 1995; ). Structural analysis of human replication protein A. Mapping functional domains of the 70-kDa subunit. J Biol Chem 270, 4534-4543.[CrossRef]
    [Google Scholar]
  16. Gomes, X. V. & Wold, M. S. ( 1996; ). Functional domains of the 70-kilodalton subunit of human replication protein A. Biochemistry 35, 10558-10568.[CrossRef]
    [Google Scholar]
  17. Greipel, J., Urbanke, C. & Maass, G. ( 1989; ). The single-stranded DNA binding protein of Escherichia coli. Physicochemical properties and biological functions. In Protein–Nucleic Acid Interaction , pp. 61-86. Edited by W. Saenger & U. Heinemann. London: Macmillan.
  18. Handa, P., Acharya, N. & Varshney, U. ( 2001; ). Chimeras between single-stranded DNA-binding proteins from Escherichia coli and Mycobacterium tuberculosis reveal that their C-terminal domains interact with uracil DNA glycosylases. J Biol Chem 276, 16992-16997.[CrossRef]
    [Google Scholar]
  19. Hardy, F., Vriend, G., Veltman, O. R., van der Vinne, B., Venema, G. & Eijsink, V. G. H. ( 1993; ). Stabilization of Bacillus stearothermophilus neutral protease by introduction of prolines. FEBS Lett 317, 89-92.[CrossRef]
    [Google Scholar]
  20. Kelly, T. J., Simancek, P. & Brush, G. S. ( 1998; ). Identification and characterization of a single-stranded DNA-binding protein from the archaeon Methanococcus jannaschii. Proc Natl Acad Sci USA 95, 14634-14639.[CrossRef]
    [Google Scholar]
  21. Kelman, Z., Pietrokovski, S. & Hurwitz, J. ( 1999; ). Isolation and characterization of a split B-type DNA polymerase from the archaeon Methanobacterium thermoautotrophicum ΔH. J Biol Chem 274, 28751-28761.[CrossRef]
    [Google Scholar]
  22. Komori, K. & Ishino, Y. ( 2001; ). Replication protein A in Pyrococcus furiosus is involved in homologous DNA recombination. J Biol Chem 276, 25654-25660.[CrossRef]
    [Google Scholar]
  23. Korolev, S., Murad, N., Barnes, W. M., DiCera, E. & Waksman, G. ( 1995; ). Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2·5-Å resolution: structural basis for thermostability. Proc Natl Acad Sci USA 84, 9264-9268.
    [Google Scholar]
  24. Kur, J., Hasan, N. & Szybalski, W. ( 1989; ). Physical and biological consequences of interactions between integration host factor (IHF) and coliphage lambda late p R′ promoter and its mutants. Gene 81, 1-15.[CrossRef]
    [Google Scholar]
  25. Ladenstein, R. & Antranikian, G. ( 1998; ). Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water. Adv Biochem Eng Biotechnol 61, 37-85.
    [Google Scholar]
  26. Lin, Y.-L., Shivji, K. K. M., Chen, C., Kolodner, R., Wood, R. R. & Dutta, A. ( 1998; ). The evolutionarily conserved zinc finger motif in the largest subunit of human replication protein A is required for DNA replication and mismatch repair but not for nucleotide excision repair. J Biol Chem 273, 1453-1461.[CrossRef]
    [Google Scholar]
  27. Lohman, T. M. & Overman, L. B. ( 1985; ). Two binding modes in Escherichia coli single strand binding protein–single stranded DNA complexes. Modulation by NaCl concentration. J Biol Chem 260, 3594-3603.
    [Google Scholar]
  28. Madden, T. L., Tatusov, R. L. & Zhang, J. ( 1996; ). Applications of network BLAST server. Methods Enzymol 266, 131-141.
    [Google Scholar]
  29. Matsumoto, T., Morimoto, Y., Shibata, N., Kinebuchi, T., Shimamoto, N., Tasukihara, T. & Yasuoka, N. ( 2000; ). Roles of functional loops and the C-terminal segment of a single-stranded DNA binding protein elucidated by X-ray structure analysis. J Biochem 127, 329-335.[CrossRef]
    [Google Scholar]
  30. Matthews, B., Nicholson, H. & Becklet, W. J. ( 1987; ). Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci USA 84, 6663-6667.[CrossRef]
    [Google Scholar]
  31. Meyer, R. R. & Laine, P. S. ( 1990; ). The single-stranded DNA-binding protein of Escherichia coli. Microbiol Rev 54, 342-380.
    [Google Scholar]
  32. Moore, S. P., Erdile, T., Kelly, T. & Fishel, R. ( 1991; ). The human homologous pairing protein HPP-1 is specifically stimulated by the cognate single-stranded binding protein hRP-A. Proc Natl Acad Sci USA 88, 9067-9071.[CrossRef]
    [Google Scholar]
  33. Murzin, A. G. ( 1993; ). OB (oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 12, 861-867.
    [Google Scholar]
  34. Pfuetzner, R. A., Bochkarev, A., Frappier, L. & Edwards, A. M. ( 1997; ). Replication protein A. Characterization and crystallization of the DNA binding domain. J Biol Chem 272, 430-434.[CrossRef]
    [Google Scholar]
  35. Purnapatre, K. & Varshney, U. ( 1999; ). Cloning, over-expression and biochemical characterization of the single-stranded DNA binding protein from Mycobacterium tuberculosis. Eur J Biochem 264, 591-598.[CrossRef]
    [Google Scholar]
  36. Raghunathan, S., Ricard, C. S., Lohman, T. M. & Waksman, G. ( 1997; ). Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2. 9-Å resolution. Proc Natl Acad Sci USA 94, 6652-6657.[CrossRef]
    [Google Scholar]
  37. Raghunathan, S., Kozlov, A. G., Lohman, T. M. & Waksman, G. ( 2000; ). Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat Struct Biol 7, 648-652.[CrossRef]
    [Google Scholar]
  38. Rudolf, R., Böhm, G., Lilie, H. & Jaenicke, R. (1996). Folding proteins. In Protein Function: a Practical Approach. Edited by T. E. Creighton. Oxford: IRL Press.
  39. Scandurra, R., Consalvi, V., Chiaraluce, R., Politi, L. & Engel, P. ( 1998; ). Protein thermostability in extremophiles. Biochimie 80, 933-941.[CrossRef]
    [Google Scholar]
  40. Siegel, L. M. & Monty, K. J. ( 1966; ). Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases. Biochim Biophys Acta 112, 346-362.[CrossRef]
    [Google Scholar]
  41. Smith, D. R., Doucette-Stamm, L. A., Deloughery, C. & 34 other authors ( 1997; ). Complete genome sequence of Methanobacterium thermoautotrophicum ΔH: functional analysis and comparative genomics. J Bacteriol 179, 7135–7155.
    [Google Scholar]
  42. Szalewska-Pałasz, A., Weigel, C., Speck, C. & 7 other authors ( 1998; ). Interaction of the Escherichia coli DnaA protein with bacteriophage lambda DNA. Mol Gen Genet 259, 678–688.
    [Google Scholar]
  43. Urbanke, C. & Schaper, A. ( 1990; ). Kinetics of binding of single-stranded DNA binding protein from Escherichia coli to single-stranded nuclei acids. Biochemistry 29, 1744-1749.[CrossRef]
    [Google Scholar]
  44. van den Burg, B., Dijkstra, B. W., Vriend, G., van der Vinne, B., Venema, G. & Eijsink, V. G. H. ( 1994; ). Protein stabilization by hydrophobic interactions at the surface. Eur J Biochem 220, 981-985.[CrossRef]
    [Google Scholar]
  45. Vieille, C. & Zeikus, G. J. ( 2001; ). Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65, 1-43.[CrossRef]
    [Google Scholar]
  46. Webster, G., Genschel, J., Curth, U., Urbanke, C., Kang, C.-H. & Hilgenfeld, R. ( 1997; ). A common core for binding single-stranded DNA: structural comparison of the single-stranded DNA-binding proteins (SSB) from E. coli and human mitochondria. FEBS Lett 411, 313-316.[CrossRef]
    [Google Scholar]
  47. Williams, K. R., Spicer, E. K., LoPresti, M. B., Guggenheimer, R. A. & Chase, J. W. ( 1983; ). Limited proteolysis studies on the Escherichia coli single-stranded DNA binding protein. Evidence for a functionally homologous domain in both the Escherichia coli and T4 DNA binding proteins. J Biol Chem 258, 3346-3355.
    [Google Scholar]
  48. Yang, C., Curth, U., Urbanke, C. & Kang, C.-H. ( 1997; ). Crystal structure of human mitochondrial single-stranded DNA binding protein at 2. 4 Å resolution. Nat Struct Biol 4, 153-157.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-10-3307
Loading
/content/journal/micro/10.1099/00221287-148-10-3307
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error