Effects of the Min system on nucleoid segregation in Free

Abstract

The Min system of directs cell division to the mid-cell by a mechanism that involves the dynamic localization of all of its three constituent proteins, MinC, MinD and MinE. Both the Min system and the nucleoid regulate cell division negatively and strains of lacking a functional Min system can divide at nucleoid-free cell poles in addition to the nucleoid-free region between newly segregated nucleoids. Interestingly, strains with a defective Min system have disturbed nucleoid segregation and the cause for this disturbance is not known. It is reported here that growth conditions promoting a higher frequency of polar divisions also lead to a more pronounced disturbance in nucleoid segregation. In strains with an intact Min system, expression of MinE, but not of MinD, from an inducible promoter was followed by impaired nucleoid segregation. These results suggest that the disturbed nucleoid segregation in mutants is not caused by polar divisions per se, nor by impaired resolution of chromosome dimers in mutants, leaving open the possibility that the Min system has a direct effect on nucleoid segregation. It is also shown how the disturbed nucleoid segregation can explain in part the unexpected finding that the clear majority of cells in mutant populations contain 2 (=0, 1, 2…) origins of replication.

Keyword(s): cell size , min mutants and minicells
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-10-3213
2002-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/10/1483213a.html?itemId=/content/journal/micro/10.1099/00221287-148-10-3213&mimeType=html&fmt=ahah

References

  1. Åkerlund T, Bernander R., Nordström K. 1992; Cell division in Escherichia coli minB mutants. Mol Microbiol 6:2073–2083
    [Google Scholar]
  2. Bernander R, Åkerlund T., Nordström K. 1995; Inhibition and restart of initiation of chromosome replication: effects on exponentially growing Escherichia coli cells. J Bacteriol 177:1670–1682
    [Google Scholar]
  3. Bi E., Lutkenhaus J. 1990; FtsZ regulates frequency of cell division in Escherichia coli . J Bacteriol 172:2765–2768
    [Google Scholar]
  4. Botello E., Nordström K. 1998; Effects of chromosome underreplication on cell division in Escherichia coli . J Bacteriol 180:6364–6374
    [Google Scholar]
  5. Boyle D. S, Grant D, Draper G. C., Donachie W. D. 2000; All major regions of FtsK are required for resolution of chromosome dimers. J Bacteriol 182:4124–4127
    [Google Scholar]
  6. de Boer P. A, Crossley R. E., Rothfield L. I. 1989; A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli . Cell 56:641–649
    [Google Scholar]
  7. de Boer P. A, Crossley R. E, Hand A. R., Rothfield L. I. 1991; The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. EMBO J 10:4371–4380
    [Google Scholar]
  8. de Boer P. A, Crossley R. E., Rothfield L. I. 1992; Roles of MinC and MinD in the site-specific septation block mediated by the MinCDE system of Escherichia coli . J Bacteriol 174:63–70
    [Google Scholar]
  9. Donachie W. D., Begg K. J. 1996; ‘Division potential’ in Escherichia coli . J Bacteriol 178:5971–5976
    [Google Scholar]
  10. Grinsted J, Saunders J. R, Ingram L. C, Sykes R. B., Richmond M. H. 1972; Properties of an R factor which originated in Pseudomonas aeruginosa 1822. J Bacteriol 110:529–537
    [Google Scholar]
  11. Gullbrand B., Nordström K. 2000; FtsZ ring formation without subsequent cell division after replication runout in Escherichia coli . Mol Microbiol 36:1349–1359
    [Google Scholar]
  12. Hale C. A, Meinhardt H., de Boer P. A. 2001; Dynamic localization cycle of the cell division regulator MinE in Escherichia coli . EMBO J 20:1563–1572
    [Google Scholar]
  13. Helmstetter C. E., Cooper S. 1968; DNA synthesis during the division cycle of rapidly growing Escherichia coli B/r. J Mol Biol 31:507–518
    [Google Scholar]
  14. Hu Z., Lutkenhaus J. 1999; Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol Microbiol 34:82–90
    [Google Scholar]
  15. Hu Z., Lutkenhaus J. 2000; Analysis of MinC reveals two independent domains involved in interaction with MinD and FtsZ. J Bacteriol 182:3965–3971
    [Google Scholar]
  16. Hu Z., Lutkenhaus J. 2001; Topological regulation of cell division in E. coli spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid. Mol Cell 7:1337–1343
    [Google Scholar]
  17. Hu Z, Mukherjee A, Pichoff S., Lutkenhaus J. 1999; The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc Natl Acad Sci USA 96:14819–14824
    [Google Scholar]
  18. Jaffé A, D’Ari R., Hiraga S. 1988; Minicell-forming mutants of Escherichia coli : production of minicells and anucleate rods. J Bacteriol 170:3094–3101
    [Google Scholar]
  19. Jaffé A, Boye E., D’Ari R. 1990; Rule governing the division pattern in Escherichia coli minB and wild-type filaments. J Bacteriol 172:3500–3502
    [Google Scholar]
  20. Margolin W. 2000; Themes and variations in prokaryotic cell division. FEMS Microbiol Rev 24:531–548
    [Google Scholar]
  21. Mulder E, El’Bouhali M, Pas E., Woldringh C. L. 1990; The Escherichia coli minB mutation resembles gyrB in defective nucleoid segregation and decreased negative supercoiling of plasmids. Mol Gen Genet 221:87–93
    [Google Scholar]
  22. Nanninga N. 1998; Morphogenesis of Escherichia coli . Microbiol Mol Biol Rev 62:110–129
    [Google Scholar]
  23. Nordström K., Dasgupta S. 2001; Partitioning of the Escherichia coli chromosome: superhelicity and condensation. Biochimie 83:41–48
    [Google Scholar]
  24. Pérals K, Cornet F, Merlet Y, Delon I., Louarn J.-M. 2000; Functional polarization of the Escherichia coli chromosome terminus: the dif site acts in chromosome dimer resolution only when located between long stretches of opposite polarity. Mol Microbiol 36:33–43
    [Google Scholar]
  25. Raskin D. M., de Boer P. A. 1997; The MinE ring: an FtsZ-independent cell structure required for selection of the correct division site in E. coli . Cell 91:685–694
    [Google Scholar]
  26. Raskin D. M., de Boer P. A. 1999a; MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli . J Bacteriol 181:6419–6424
    [Google Scholar]
  27. Raskin D. M., de Boer P. A. 1999b; Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli . Proc Natl Acad Sci USA 96:4971–4976
    [Google Scholar]
  28. Recchia G. D, Aroyo M, Wolf D, Blakely G., Sherratt D. J. 1999; FtsK-dependent and -independent pathways of Xer site-specific recombination. EMBO J 18:5724–5734
    [Google Scholar]
  29. Sambrook J, Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Steiner W. W., Kuempel P. L. 1998; Cell division is required for resolution of dimer chromosomes at the dif locus of Escherichia coli . Mol Microbiol 27:257–268
    [Google Scholar]
  31. Teather R. M, Collins J. F., Donachie W. D. 1974; Quantal behavior of a diffusible factor which initiates septum formation at potential division sites in Escherichia coli . J Bacteriol 118:407–413
    [Google Scholar]
  32. Woldringh C. L, Mulder E, Valkenburg J. A, Wientjes F. B, Zaritsky A., Nanninga N. 1990; Role of the nucleoid in the toporegulation of division. Res Microbiol 141:39–49
    [Google Scholar]
  33. Yu X. C., Margolin W. 1999; FtsZ ring clusters in min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization. Mol Microbiol 32:315–326
    [Google Scholar]
  34. Yu X. C, Tran A. H, Sun Q., Margolin W. 1998; Localization of cell division protein FtsK to the Escherichia coli septum and identification of a potential N-terminal targeting domain. J Bacteriol 180:1296–1304
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-10-3213
Loading
/content/journal/micro/10.1099/00221287-148-10-3213
Loading

Data & Media loading...

Most cited Most Cited RSS feed