1887

Abstract

The Min system of directs cell division to the mid-cell by a mechanism that involves the dynamic localization of all of its three constituent proteins, MinC, MinD and MinE. Both the Min system and the nucleoid regulate cell division negatively and strains of lacking a functional Min system can divide at nucleoid-free cell poles in addition to the nucleoid-free region between newly segregated nucleoids. Interestingly, strains with a defective Min system have disturbed nucleoid segregation and the cause for this disturbance is not known. It is reported here that growth conditions promoting a higher frequency of polar divisions also lead to a more pronounced disturbance in nucleoid segregation. In strains with an intact Min system, expression of MinE, but not of MinD, from an inducible promoter was followed by impaired nucleoid segregation. These results suggest that the disturbed nucleoid segregation in mutants is not caused by polar divisions per se, nor by impaired resolution of chromosome dimers in mutants, leaving open the possibility that the Min system has a direct effect on nucleoid segregation. It is also shown how the disturbed nucleoid segregation can explain in part the unexpected finding that the clear majority of cells in mutant populations contain 2 (=0, 1, 2…) origins of replication.

Keyword(s): cell size , min mutants and minicells
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-10-3213
2002-10-01
2020-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/10/1483213a.html?itemId=/content/journal/micro/10.1099/00221287-148-10-3213&mimeType=html&fmt=ahah

References

  1. Åkerlund T, Bernander R., Nordström K. 1992; Cell division in Escherichia coli minB mutants. Mol Microbiol6:2073–2083
    [Google Scholar]
  2. Bernander R, Åkerlund T., Nordström K. 1995; Inhibition and restart of initiation of chromosome replication: effects on exponentially growing Escherichia coli cells. J Bacteriol177:1670–1682
    [Google Scholar]
  3. Bi E., Lutkenhaus J. 1990; FtsZ regulates frequency of cell division in Escherichia coli . J Bacteriol172:2765–2768
    [Google Scholar]
  4. Botello E., Nordström K. 1998; Effects of chromosome underreplication on cell division in Escherichia coli . J Bacteriol180:6364–6374
    [Google Scholar]
  5. Boyle D. S, Grant D, Draper G. C., Donachie W. D. 2000; All major regions of FtsK are required for resolution of chromosome dimers. J Bacteriol182:4124–4127
    [Google Scholar]
  6. de Boer P. A, Crossley R. E., Rothfield L. I. 1989; A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli . Cell56:641–649
    [Google Scholar]
  7. de Boer P. A, Crossley R. E, Hand A. R., Rothfield L. I. 1991; The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. EMBO J10:4371–4380
    [Google Scholar]
  8. de Boer P. A, Crossley R. E., Rothfield L. I. 1992; Roles of MinC and MinD in the site-specific septation block mediated by the MinCDE system of Escherichia coli . J Bacteriol174:63–70
    [Google Scholar]
  9. Donachie W. D., Begg K. J. 1996; ‘Division potential’ in Escherichia coli . J Bacteriol178:5971–5976
    [Google Scholar]
  10. Grinsted J, Saunders J. R, Ingram L. C, Sykes R. B., Richmond M. H. 1972; Properties of an R factor which originated in Pseudomonas aeruginosa 1822. J Bacteriol110:529–537
    [Google Scholar]
  11. Gullbrand B., Nordström K. 2000; FtsZ ring formation without subsequent cell division after replication runout in Escherichia coli . Mol Microbiol36:1349–1359
    [Google Scholar]
  12. Hale C. A, Meinhardt H., de Boer P. A. 2001; Dynamic localization cycle of the cell division regulator MinE in Escherichia coli . EMBO J20:1563–1572
    [Google Scholar]
  13. Helmstetter C. E., Cooper S. 1968; DNA synthesis during the division cycle of rapidly growing Escherichia coli B/r. J Mol Biol31:507–518
    [Google Scholar]
  14. Hu Z., Lutkenhaus J. 1999; Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol Microbiol34:82–90
    [Google Scholar]
  15. Hu Z., Lutkenhaus J. 2000; Analysis of MinC reveals two independent domains involved in interaction with MinD and FtsZ. J Bacteriol182:3965–3971
    [Google Scholar]
  16. Hu Z., Lutkenhaus J. 2001; Topological regulation of cell division in E. coli spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid. Mol Cell7:1337–1343
    [Google Scholar]
  17. Hu Z, Mukherjee A, Pichoff S., Lutkenhaus J. 1999; The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc Natl Acad Sci USA96:14819–14824
    [Google Scholar]
  18. Jaffé A, D’Ari R., Hiraga S. 1988; Minicell-forming mutants of Escherichia coli : production of minicells and anucleate rods. J Bacteriol170:3094–3101
    [Google Scholar]
  19. Jaffé A, Boye E., D’Ari R. 1990; Rule governing the division pattern in Escherichia coli minB and wild-type filaments. J Bacteriol172:3500–3502
    [Google Scholar]
  20. Margolin W. 2000; Themes and variations in prokaryotic cell division. FEMS Microbiol Rev24:531–548
    [Google Scholar]
  21. Mulder E, El’Bouhali M, Pas E., Woldringh C. L. 1990; The Escherichia coli minB mutation resembles gyrB in defective nucleoid segregation and decreased negative supercoiling of plasmids. Mol Gen Genet221:87–93
    [Google Scholar]
  22. Nanninga N. 1998; Morphogenesis of Escherichia coli . Microbiol Mol Biol Rev62:110–129
    [Google Scholar]
  23. Nordström K., Dasgupta S. 2001; Partitioning of the Escherichia coli chromosome: superhelicity and condensation. Biochimie83:41–48
    [Google Scholar]
  24. Pérals K, Cornet F, Merlet Y, Delon I., Louarn J.-M. 2000; Functional polarization of the Escherichia coli chromosome terminus: the dif site acts in chromosome dimer resolution only when located between long stretches of opposite polarity. Mol Microbiol36:33–43
    [Google Scholar]
  25. Raskin D. M., de Boer P. A. 1997; The MinE ring: an FtsZ-independent cell structure required for selection of the correct division site in E. coli . Cell91:685–694
    [Google Scholar]
  26. Raskin D. M., de Boer P. A. 1999a; MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli . J Bacteriol181:6419–6424
    [Google Scholar]
  27. Raskin D. M., de Boer P. A. 1999b; Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli . Proc Natl Acad Sci USA96:4971–4976
    [Google Scholar]
  28. Recchia G. D, Aroyo M, Wolf D, Blakely G., Sherratt D. J. 1999; FtsK-dependent and -independent pathways of Xer site-specific recombination. EMBO J18:5724–5734
    [Google Scholar]
  29. Sambrook J, Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Steiner W. W., Kuempel P. L. 1998; Cell division is required for resolution of dimer chromosomes at the dif locus of Escherichia coli . Mol Microbiol27:257–268
    [Google Scholar]
  31. Teather R. M, Collins J. F., Donachie W. D. 1974; Quantal behavior of a diffusible factor which initiates septum formation at potential division sites in Escherichia coli . J Bacteriol118:407–413
    [Google Scholar]
  32. Woldringh C. L, Mulder E, Valkenburg J. A, Wientjes F. B, Zaritsky A., Nanninga N. 1990; Role of the nucleoid in the toporegulation of division. Res Microbiol141:39–49
    [Google Scholar]
  33. Yu X. C., Margolin W. 1999; FtsZ ring clusters in min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization. Mol Microbiol32:315–326
    [Google Scholar]
  34. Yu X. C, Tran A. H, Sun Q., Margolin W. 1998; Localization of cell division protein FtsK to the Escherichia coli septum and identification of a potential N-terminal targeting domain. J Bacteriol180:1296–1304
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-10-3213
Loading
/content/journal/micro/10.1099/00221287-148-10-3213
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error