1887

Abstract

The gene, encoding the mycobacterial orthologue of alkylhydroperoxide reductase, undergoes an unusual regulatory cycle. The levels of AhpC alternate between stages of expression silencing in virulent strains grown as aerated cultures, secondary to a natural loss of the regulatory function in all strains of the tubercle bacillus, and expression activation in static bacilli by a yet undefined mechanism. The reasons for this unorthodox regulatory cycle controlling expression of an antioxidant factor are currently not known. In this work, H37Rv and mc155 knockout mutants were tested for sensitivity to reactive nitrogen intermediates, in particular peroxynitrite, a highly reactive combinatorial product of reactive nitrogen and oxygen species, and sensitivity to bactericidal mechanisms in resting and activated macrophages. Both ::Km and ::Km showed increased susceptibility to peroxynitrite. In contrast, inactivation of in did not cause increased sensitivity to donors of NO alone. ::Km also showed decreased survival in unstimulated macrophages, but the effect was no longer detectable upon IFNγ activation. These studies establish a specific role for in antioxidant defences involving peroxynitrite and most likely additional cidal mechanisms in macrophages, with the regulatory cycle likely contributing to survival upon coming out of the stationary phase during dormancy (latent infection) or upon transmission to a new host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-10-3139
2002-10-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/10/1483139a.html?itemId=/content/journal/micro/10.1099/00221287-148-10-3139&mimeType=html&fmt=ahah

References

  1. Akaki T, Tomioka H, Shimizu T, Dekio S., Sato K. 2000; Comparative roles of free fatty acids with reactive nitrogen intermediates and reactive oxygen intermediates in expression of the anti-microbial activity of macrophages against Mycobacterium tuberculosis . Clin Exp Immunol121:302–310
    [Google Scholar]
  2. Aslund F, Zheng M, Beckwith J., Storz G. 1999; Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci USA96:6161–6165
    [Google Scholar]
  3. Baillon M. L, van Vliet A. H, Ketley J. M, Constantinidou C., Penn C. W. 1999; An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni . J Bacteriol181:4798–4804
    [Google Scholar]
  4. Bryk R, Griffin P., Nathan C. 2000; Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature407:211–215
    [Google Scholar]
  5. Bsat N, Herbig A, Casillas-Martinez L, Setlow P., Helmann J. D. 1998; Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol29:189–198
    [Google Scholar]
  6. Chauhan R., Mande S. C. 2001; Characterization of the Mycobacterium tuberculosis H37Rv alkyl hydroperoxidase AhpC points to the importance of ionic interactions in oligomerization and activity. Biochem J354:209–215
    [Google Scholar]
  7. Chen L, Xie Q. W., Nathan C. 1998; Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol Cell1:795–805
    [Google Scholar]
  8. Christman M. F, Morgan R. W, Jacobson F. S., Ames B. N. 1985; Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium . Cell41:753–762
    [Google Scholar]
  9. Cole S. T. 1998; The Mycobacterium leprae genome project. Int J Lepr Other Mycobact Dis66:589–591
    [Google Scholar]
  10. Cooper A. M, Segal B. H, Frank A. A, Holland S. M., Orme I. M. 2000; Transient loss of resistance to pulmonary tuberculosis in p47(phox−/−) mice. Infect Immun68:1231–1234
    [Google Scholar]
  11. Darrah P. A, Hondalus M. K, Chen Q, Ischiropoulos H., Mosser D. M. 2000; Cooperation between reactive oxygen and nitrogen intermediates in killing of Rhodococcus equi by activated macrophages. Infect Immun68:3587–3593
    [Google Scholar]
  12. Deretic V, Philipp W, Dhandayuthapani S, Mudd M. H, Curcic R, Garbe T, Heym B, Via L. E., Cole S. T. 1995; Mycobacterium tuberculosis is a natural mutant with an inactivated oxidative-stress regulatory gene: implications for sensitivity to isoniazid. Mol Microbiol17:889–900
    [Google Scholar]
  13. Deretic V, Song J., Pagan-Ramos E. 1997; Loss of oxyR in Mycobacterium tuberculosis . Trends Microbiol5:367–372
    [Google Scholar]
  14. Dhandayuthapani S, Zhang Y, Mudd M. H., Deretic V. 1996; Oxidative stress response and its role in sensitivity to isonicotinic acid hydrazide in Mycobacterium species: characterization and inducibility of ahpC by peroxides in M. smegmatis and lack of expression in M. aurum and M. tuberculosis. J Bacteriol178:3641–3649
    [Google Scholar]
  15. Dubrac S., Touati D. 2000; Fur positive regulation of iron superoxide dismutase in Escherichia coli : functional analysis of the sodB promoter. J Bacteriol182:3802–3808
    [Google Scholar]
  16. Hassett D. J, Howell M. L, Ochsner U. A, Vasil M. L, Johnson Z., Dean G. E. 1997; An operon containing fumC and sodA encoding fumarase C and manganese superoxide dismutase is controlled by the ferric uptake regulator in Pseudomonas aeruginosa : fur mutants produce elevated alginate levels. J Bacteriol179:1452–1459
    [Google Scholar]
  17. Heym B, Zhang Y, Poulet S, Young D., Cole S. T. 1993; Characterization of the katG gene encoding a catalase-peroxidase required for the isoniazid susceptibility of Mycobacterium tuberculosis . J Bacteriol175:4255–4259
    [Google Scholar]
  18. Heym B, Stavropoulos E, Honore N, Domenech P, Saint-Joanis B. T, Wilson M, Collins D. M, Colston M. J., Cole S. T. 1997; Effects of overexpression of the alkyl hydroperoxide reductase AhpC on the virulence and isoniazid resistance of Mycobacterium tuberculosis . Infect Immun65:1395–1401
    [Google Scholar]
  19. Hillas P. J, del Alba F. S, Oyarzabal J, Wilks A., Ortiz De Montellano P. R. 2000; The AhpC and AhpD antioxidant defense system of Mycobacterium tuberculosis . J Biol Chem275:18801–18809
    [Google Scholar]
  20. Jacobson F. S, Morgan R. W, Christman M. F., Ames B. N. 1989; An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. J Biol Chem264:1488–1496
    [Google Scholar]
  21. Jiang Z.-Y, Hunt J. V., Wolff S. P. 1992; Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low-density lipoprotein. Ann Biochem202:384–389
    [Google Scholar]
  22. Karupiah G, Hunt N. H, King N. J., Chaudhri G. 2000; NADPH oxidase, Nramp1 and nitric oxide synthase 2 in the host antimicrobial response. Rev Immunogenet2:387–415
    [Google Scholar]
  23. Lee H. S, Lee Y. S, Kim H. S, Choi J. Y, Hassan H. M., Chung M. H. 1998; Mechanism of regulation of 8-hydroxyguanine endonuclease by oxidative stress: roles of FNR, ArcA, and Fur. Free Radic Biol Med24:1193–1201
    [Google Scholar]
  24. Li Z, Kelley C, Collins F, Rouse D., Morris S. 1998; Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J Infect Dis177:1030–1035
    [Google Scholar]
  25. Magliozzo R. S., Marcinkeviciene J. A. 1997; The role of Mn(II)-peroxidase activity of mycobacterial catalase-peroxidase in activation of the antibiotic isoniazid. J Biol Chem272:8867–8870
    [Google Scholar]
  26. Manca C, Paul S, Barry C. E. 3rd, Freedman V. H., Kaplan G. 1999; Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro . Infect Immun67:74–79
    [Google Scholar]
  27. Master S, Zahrt T. C, Song J., Deretic V. 2001; Mapping of Mycobacterium tuberculosis katG promoters and their differential expression in infected macrophages. J Bacteriol183:4033–4039
    [Google Scholar]
  28. Middlebrook G., Kohn M. L. 1953; Some observations on the pathogenicity of isoniazid resistant variants of the tubercle bacilli. Science118:297–299
    [Google Scholar]
  29. Mitchison D. A, Selkon J. B., Lloyd J. 1963; Virulence in the guinea pig, susceptibility to hydrogen peroxide, and catalase activity of isoniazid-sensitive tubercle bacilli from South Indian and British patients. J Pathol Bacteriol86:377–386
    [Google Scholar]
  30. Morse W. C, Weiser O. L, Kuhns D. M, Fusillo M, Dail M. C., Evans J. R. 1954; Study of the virulence of isoniazid-resistant tubercle bacilli in guinea pigs and mice. Am Rev Tuberc69:464–468
    [Google Scholar]
  31. Musser J. M. 1995; Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin Microbiol Rev8:496–514
    [Google Scholar]
  32. Nakata N, Matsuoka M, Kashiwabara Y, Okada N., Sasakawa C. 1997; Nucleotide sequence of the Mycobacterium leprae katG region. J Bacteriol179:3053–3057
    [Google Scholar]
  33. Nathan C., Shiloh M. U. 2000; Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA97:8841–8848
    [Google Scholar]
  34. Niederhoffer E. C, Naranjo C. M, Bradley K. L., Fee J. A. 1990; Control of Escherichia coli superoxide dismutase ( sodA and sodB) genes by the ferric uptake regulation ( fur) locus. J Bacteriol172:1930–1938
    [Google Scholar]
  35. Nourooz-Zadeh J, Tajaddini-Sarmadi J., Wolff S. P. 1994; Measurement of plasma hydroperoxide concentrations by the ferrous oxidation xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem220:403–409
    [Google Scholar]
  36. Pagan-Ramos E, Song J, McFalone M, Mudd M. H., Deretic V. 1998; Oxidative stress response and characterization of the oxyR - ahpC and furA - katG loci in Mycobacterium marinum. J Bacteriol180:4856–4864
    [Google Scholar]
  37. Paziak-Domanska B, Klink M, Jurkiewicz M., Rudnicka W. 2000; Production of reactive nitrogen and oxygen intermediates in human granulocytes and monocytes during internalization of live BCG bacilli. Med Dosw Mikrobiol52:353–360
    [Google Scholar]
  38. Sherman D. R, Mdluli K, Hickey M. J, Arain T. M, Morris S. L, Barry C. E., Stover C. K. 1996; Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis . Science272:1641–1643
    [Google Scholar]
  39. Shiloh M. U., Nathan C. F. 2000; Reactive nitrogen intermediates and the pathogenesis of Salmonella and mycobacteria. Curr Opin Microbiol3:35–42
    [Google Scholar]
  40. Springer B, Master S, Sander P.. 7 other authors 2001; Silencing the oxidative stress response in Mycobacterium tuberculosis : Expression patterns of ahpC in virulent and avirulent strains and the effect of ahpC inactivation. Infect Immun69:5967–5973
    [Google Scholar]
  41. Sreevatsan S, Pan X, Zhang Y, Deretic V., Musser J. M. 1997; Analysis of the oxyR - ahpC region in isoniazid-resistant and -susceptible Mycobacterium tuberculosis complex organisms recovered from diseased humans and animals in diverse localities. Antimicrob Agents Chemother41:600–606
    [Google Scholar]
  42. Storz G., Altuvia S. 1994; OxyR regulon. Methods Enzymol234:217–223
    [Google Scholar]
  43. Tardat B., Touati D. 1993; Iron and oxygen regulation of Escherichia coli MnSOD expression: competition between the global regulators Fur and ArcA for binding to DNA. Mol Microbiol9:53–63
    [Google Scholar]
  44. van Vliet A. H, Wooldridge K. G., Ketley J. M. 1998; Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol180:5291–5298
    [Google Scholar]
  45. van Vliet A. H, Baillon M. L, Penn C. W., Ketley J. M. 1999; Campylobacter jejuni contains two fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J Bacteriol181:6371–6376
    [Google Scholar]
  46. Wallis R. S, Patil S, Cheon S. H.. 12 other authors 1999; Drug tolerance in Mycobacterium tuberculosis . Antimicrob Agents Chemother43:2600–2606
    [Google Scholar]
  47. Wallis R. S, Perkins M. D, Phillips M.. 10 other authors 2000; Predicting the outcome of therapy for pulmonary tuberculosis. Am J Respir Crit Care Med161:1076–1080
    [Google Scholar]
  48. Wengenack N. L, Jensen M. P, Rusnak F., Stern M. K. 1999; Mycobacterium tuberculosis KatG is a peroxynitritase. Biochem Biophys Res Commun256:485–487
    [Google Scholar]
  49. Wilson T, de Lisle G. W, Marcinkeviciene J. A, Blanchard J. S., Collins D. M. 1998; Antisense RNA to ahpC , an oxidative stress defence gene involved in isoniazid resistance, indicates that AhpC of Mycobacterium bovis has virulence properties. Microbiology144:2687–2695
    [Google Scholar]
  50. Wilson T. M, de Lisle G. W., Collins D. M. 1995; Effect of inhA and katG on isoniazid resistance and virulence of Mycobacterium bovis. Mol Microbiol15:1009–1015
    [Google Scholar]
  51. Wolff S. P. 1994; Ferrous ion oxidation in the presence of ferric iron indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol223:182–189
    [Google Scholar]
  52. Yu K, Mitchell C, Xing Y, Magliozzo R. S, Bloom B. R., Chan J. 1999; Toxicity of nitrogen oxides and related oxidants on mycobacteria: M. tuberculosis is resistant to peroxynitrite anion. Tuber Lung Dis79:191–198
    [Google Scholar]
  53. Zahrt T. C., Deretic V. 2002; Reactive nitrogen and oxygen intermediates and bacterial defenses: unusual adaptations in Mycobacterium tuberculosis . Antioxid Redox Signal4:141–159
    [Google Scholar]
  54. Zahrt T. C, Song J, Siple J., Deretic V. 2001; Mycobacterial FurA is a negative regulator of catalase-peroxidase gene katG . Mol Microbiol39:1174–1185
    [Google Scholar]
  55. Zheng M, Doan B, Schneider T. D., Storz G. 1999; OxyR and SoxRS regulation of fur . J Bacteriol181:4639–4643
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-10-3139
Loading
/content/journal/micro/10.1099/00221287-148-10-3139
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error