1887

Abstract

Glycopeptidolipids (GPLs) are a class of species- or type-specific mycobacterial lipids and major constituents of the cell envelopes of many non-tuberculous mycobacteria. To determine the function of GPLs in the physiology of these bacteria, a mutant of in which the gene encoding a mycobacterial nonribosomal peptide synthetase has been inactivated by transposon mutagenesis was analysed. Labelling experiments indicated that half of the bacterial GPLs were located on the cell surface and represented 85% of the surface-exposed lipids of the parent strain whereas the mutant was defective in the production of the GPLs. Compared to the parent smooth morphotype strain, the GPL-deficient mutant strain exhibited a rough colony morphology, an increase of the cell hydrophobicity and formed huge aggregates. As a consequence, the mutant cells were no longer able to bind ruthenium red, as observed by transmission electron microscopy. The altered surface properties of the mutant cells also affected the phagocytosis of individual bacilli by human monocyte-derived macrophages since mutant cells were internalized more rapidly than cells from the parent strain. Nevertheless, no specific release of surface constituents into the culture broth of the mutant was observed, indicating that the cell surface is composed of substances other than GPLs and that these are essential for maintaining the architecture of the outermost layer of the cell envelope. Importantly, the absence of these major extractable lipids of from the mutant strain has a profound effect on the uptake of the hydrophobic chenodeoxycholate by cells, indicating that GPLs are involved in the cell wall permeability barrier of . Altogether, these data showed that, in addition to being distinctive markers of numerous mycobacterial species, GPLs play a role in the bacterial phenotype, surface properties and cell wall permeability.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-10-3089
2002-10-01
2020-02-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/10/1483089a.html?itemId=/content/journal/micro/10.1099/00221287-148-10-3089&mimeType=html&fmt=ahah

References

  1. Astarie-Dequeker C, N’Diaye E. N, Le Cabec V, Rittig M. G, Prandi J., Maridonneau-Parini I. 1999; The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect Immun67:469–477
    [Google Scholar]
  2. Bardou F, Raynaud C, Ramos C, Lanéelle M.-A., Lanéelle G. 1998; Isoniazid uptake mechanism in Mycobacterium tuberculosis. Microbiology 144:2539–2544
    [Google Scholar]
  3. Barksdale L., Kim K. S. 1977; Mycobacterium . Bacteriol Rev41:217–372
    [Google Scholar]
  4. Barrow W. W., Brennan P. J. 1982; Isolation in high frequency of rough variants of Mycobacterium intracellulare lacking C-mycoside glycopeptidolipid antigens. J Bacteriol150:381–384
    [Google Scholar]
  5. Bayer M. E., Sloyer J. L. 1990; The electrophoretic mobility of Gram-negative and Gram-positive bacteria: an electrokinetic analysis. J Gen Microbiol136:867–874
    [Google Scholar]
  6. Belisle J. T, Pascopella L, Inamine J. M, Brennan P. J., Jacobs W. R. 1991; Isolation and expression of a gene cluster responsible for biosynthesis of the glycopeptidolipid antigens of Mycobacterium avium . J Bacteriol173:6991–6997
    [Google Scholar]
  7. Bendinger B, Rijnaarts H. H. M, Altendorf K., Zehnder A. J. B. 1993; Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl Environ Microbiol59:3973–3977
    [Google Scholar]
  8. Benedetti E. L, Dunia I, Ludosky M. A, Nguyen V. M, Dang D. T, Rastogi N., David H. L. 1984; Freeze-etching and freeze-fracture structural features of cell envelopes in mycobacteria and leprosy derived corynebacteria. Acta Leprol2:237–248
    [Google Scholar]
  9. Besra G. S, McNeil M. R, Rivoire B, Khoo K. H, Morris H. R, Dell A., Brennan P. J. 1993; Further structural definition of a new family of glycopeptidolipids from Mycobacterium xenopi . Biochemistry32:347–355
    [Google Scholar]
  10. Billman-Jacobe H, McConville M. J, Haites R. E, Kovacevic S., Coppel R. L. 1999; Identification of a peptide synthetase involved in the biosynthesis of glycopeptidolipids of Mycobacterium smegmatis. Mol Microbiol33:1244–1253
    [Google Scholar]
  11. Borrego S, Niubó E, Ancheta O., Espinosa M. E. 2000; Study of the microbial aggregation in Mycobacterium using image analysis and electron microscopy. Tissue Cell32:494–500
    [Google Scholar]
  12. Brennan P. J. 1988; Mycobacterium and other actinomycetes. In Microbial Lipids pp203–298 Edited by Ratledge C., Wilkinson S. G.. London: Academic Press;
    [Google Scholar]
  13. Brennan P. J., Nikaido H. 1995; The envelope of mycobacteria. Annu Rev Biochem64:29–63
    [Google Scholar]
  14. Camacho L. R, Constant P, Raynaud C, Lanéelle M.-A, Triccas J. A, Gicquel B, Daffé M., Guilhot C. 2001; Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis : evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem276:19845–19854
    [Google Scholar]
  15. Cangelosi G. A, Palermo C. O, Laurent J.-P, Hamlin A. M., Brabant W. H. 1999; Colony morphotypes on Congo red agar segregate along species and drug susceptibility lines in the Mycobacterium avium–intracellulare complex. Microbiology145:1317–1324
    [Google Scholar]
  16. Cougoule C, Constant P, Etienne G, Daffé M., Maridonneau-Parini I. 2002; Lack of fusion of azurophil granules with phagosomes during phagocytosis of Mycobacterium smegmatis by human neutrophils is not actively controlled by the bacteria. Infect Immun70:1591–1598
    [Google Scholar]
  17. Daffé M., Draper P. 1998; The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microbiol Physiol39:131–201
    [Google Scholar]
  18. Daffé M., Lemassu A. 2000; Glycobiology of the mycobacterial surface: structure and biological activities of the cell envelope glycoconjugates. In Glycomicrobiology pp225–273 Edited by Doyle R. J.. New York: Kluwer/Plenum;
    [Google Scholar]
  19. Daffé M, Lanéelle M.-A., Puzo G. 1983; Structural elucidation by field desorption and electron-impact mass spectrometry of the C-mycosides isolated from Mycobacterium smegmatis . Biochim Biophys Acta751:439–443
    [Google Scholar]
  20. Dische Z. 1962; Color reaction of hexoses. Methods Carbohydr Chem1:488–494
    [Google Scholar]
  21. Dittmer J. C. F., Lester R. L. 1964; A simple specific spray for the detection of phospholipids on thin layer chromatograms. J Lipid Res5:126–127
    [Google Scholar]
  22. Draper P. 1974; The mycoside capsule of Mycobacterium avium 357. J Gen Microbiol83:431–433
    [Google Scholar]
  23. Draper P. 1982; The anatomy of mycobacteria. In The Biology of The Mycobacteriavol. 1Physiology, Identification and Classification pp9–49 Edited by Ratledge C., Stanford J. L.. London: Academic Press;
    [Google Scholar]
  24. Draper P. 1998; The outer parts of the mycobacterial envelope as permeability barrier. Frontiers Biosci3:1253–1261
    [Google Scholar]
  25. Dubnau E, Chan J, Raynaud C, Mohan V. P, Lanéelle M.-A, Yu K, Quemard A, Smith I., Daffé M. 2000; Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice . Mol Microbiol36:630–637
    [Google Scholar]
  26. Ehlers M. R., Daffé M. 1998; Interactions between Mycobacterium tuberculosis and host cells: are mycobacterial sugars the key?. Trends Microbiol6:328–335
    [Google Scholar]
  27. Furuchi A., Tokunaga T. 1972; Nature of the receptor substance of Mycobacterium smegmatis for D4 bacteriophage adsorption. J Bacteriol111:404–411
    [Google Scholar]
  28. George K. M, Yuan Y, Sherman D. R., Barry C. E. 1995; The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis : identification and functional analysis of cma-2 . J Biol Chem270:27292–27298
    [Google Scholar]
  29. Goren M. B., Brennan P. J. 1979; Mycobacterial lipids: chemistry and biological activities. In Tuberculosis pp63–193 Edited by Youmans G. P.. Philadelphia, PA: WB Saunders;
    [Google Scholar]
  30. Goren M. B, McClatchy J. K, Martens B., Brokl O. 1972; Mycosides C: behavior as receptor site substance for mycobacteriophage D4. J Virol9:999–1003
    [Google Scholar]
  31. Jackson M, Raynaud C, Lanéelle M.-A, Guilhot C, Laurent-Winter C, Ensergueix D, Gicquel B., Daffé M. 1999; Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol Microbiol31:1573–1587
    [Google Scholar]
  32. Lemassu A, Ortalo-Magné A, Bardou F, Silve G, Lanéelle M.-A., Daffé M. 1996; Extracellular and surface-exposed polysaccharides of non-tuberculous mycobacteria. Microbiology142:1513–1520
    [Google Scholar]
  33. Liu J, Rosenberg E. Y., Nikaido H. 1995; Fluidity of the lipid domain of cell wall from Mycobacterium chelonae . Proc Natl Acad Sci USA92:11254–11258
    [Google Scholar]
  34. Liu J, Barry C. E, Besra G. S., Nikaido H. 1996; Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem271:29545–29551
    [Google Scholar]
  35. Martinez A, Torello S., Kolter R. 1999; Sliding motility in mycobacteria. J Bacteriol181:7331–7338
    [Google Scholar]
  36. Minnikin D. E. 1982; Lipids: complex lipids, their chemistry, biosynthesis and roles. In The Biology of the Mycobacteriavol 1Physiology, Identification and Classification pp95–184 Edited by Ratledge C., Stanford J. L.. London: Academic Press;
    [Google Scholar]
  37. Moormann M, Zähringer U, Moll H, Kaufmann R, Schmid R., Altendorf K. 1997; A new glycosylated lipopeptide incorporated into the cell wall of a smooth variant of Gordona hydrophobica . J Biol Chem272:10729–10738
    [Google Scholar]
  38. Mukhopadhyay S, Basu D., Chakrabarti P. 1997; Characterization of a porin from Mycobacterium smegmatis . J Bacteriol179:6205–6207
    [Google Scholar]
  39. N’Diaye E. N, Darzacq X, Astarie-Dequeker C, Daffé M, Calafat J., Maridonneau-Parini I. 1998; Fusion of azurophil granules with phagosomes and activation of the tyrosine kinase Hck are specifically inhibited during phagocytosis of mycobacteria by human neutrophils. J Immunol161:4983–4991
    [Google Scholar]
  40. Ortalo-Magné A, Dupont M.-A, Lemassu A, Andersen A. B, Gounon P., Daffé M. 1995; Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology141:1609–1620
    [Google Scholar]
  41. Ortalo-Magné A, Lemassu A, Lanéelle M.-A, Bardou F, Silve G, Gounon P, Marchal G., Daffé M. 1996; Identification of the surface-exposed lipids on the cell envelope of Mycobacterium tuberculosis and other mycobacterial species. J Bacteriol178:456–461
    [Google Scholar]
  42. Paul T. R., Beveridge T. J. 1992; Reevaluation of envelope profiles and cytoplasmic ultrastructure of mycobacteria processed by conventional embedding and freeze-substitution protocols. J Bacteriol174:6508–6517
    [Google Scholar]
  43. Peyron P, Bordier C, N’Diaye E. N., Maridonneau-Parini I. 2000; Nonopsonic phagocytosis of Mycobacterium kansasii by human neutrophils depends on cholesterol and is mediated by CR3 associated with glycosylphosphatidylinositol-anchored proteins . J Immunol165:5186–5191
    [Google Scholar]
  44. Rastogi N. 1991; Recent observations concerning structure and function relationships in the mycobacterial cell envelope: elaboration of a model in terms of mycobacterial pathogenicity, virulence and drug-resistance. Res Microbiol142:464–476
    [Google Scholar]
  45. Rastogi N, Fréhel C., David H. L. 1984; Cell envelope architectures of leprosy-derived corynebacteria, Mycobacterium leprae , and related organisms: a comparative study. Curr Microbiol11:23–30
    [Google Scholar]
  46. Rastogi N, Fréhel C., David H. L. 1986; Triple-layered structure of mycobacterial cell wall: evidence for the existence of a polysaccharide-rich outer layer in 18 mycobacterial species. Curr Microbiol13:237–242
    [Google Scholar]
  47. Raynaud C, Etienne G, Peyron P, Lanéelle M.-A., Daffé M. 1998; Extracellular enzyme activities potentially involved in the pathogenicity of Mycobacterium tuberculosis . Microbiology144:577–587
    [Google Scholar]
  48. Recht J, Martinez A, Torello S., Kolter R. 2000; Genetic analysis of sliding motility in Mycobacterium smegmatis . J Bacteriol182:4348–4351
    [Google Scholar]
  49. Rivière M., Puzo G. 1991; A new type of serine-containing glycopeptidolipid from Mycobacterium xenopi . J Biol Chem266:9057–9063
    [Google Scholar]
  50. Rosenberg M, Gutnick D., Rosenberg E. 1980; Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett9:29–33
    [Google Scholar]
  51. Rulong S, Aguas A. P, da Silva P. P., Silva M. T. 1991; Intramacrophagic Mycobacterium avium bacilli are coated by a multiple lamellar structure: freeze fracture analysis of infected mouse liver. Infect Immun59:3895–3902
    [Google Scholar]
  52. Senaratne R. H, Mobasheri H, Papavinasasundaram K. G, Jenner P, Lea E. J. A., Draper P. 1998; Expression of gene for a porin-like protein of the OmpA family from Mycobacterium tuberculosis H37Rv. J Bacteriol180:3541–3547
    [Google Scholar]
  53. Takeo K, Kimura K, Kuze F, Nakai E, Nonaka T., Nishiura M. 1984; Freeze-fracture observations on the cell walls and peribacillary substances of various mycobacteria. J Gen Microbiol130:1151–1159
    [Google Scholar]
  54. Tereletsky M. J., Barrow W. W. 1983; Postphagocytic detection of glycopeptidolipids associated with the superficial L1 layer of Mycobacterium intracellulare . Infect Immun41:1312–1321
    [Google Scholar]
  55. Trias J., Benz R. 1994; Permeability of the cell wall of Mycobacterium smegmatis. Mol Microbiol14283–290
    [Google Scholar]
  56. Trias J, Jarlier V., Benz R. 1992; Porins in the cell wall of mycobacteria. Science258:1479–1481
    [Google Scholar]
  57. Van Loosdrecht M. C. M, Lyklema J, Norde W, Schraa G., Zehnder A. J. B. 1987; Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl Environ Microbiol53:1898–1901
    [Google Scholar]
  58. Yuan Y, Crane D. C, Musser J. M, Sreevatsan S., Barry C. E.III. 1997; MMAS-1, the branch point between cis - and trans -cyclopropane-containing oxygenated mycolates in Mycobacterium tuberculosis. J Biol Chem272:10041–10049
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-10-3089
Loading
/content/journal/micro/10.1099/00221287-148-10-3089
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error