1887

Abstract

and secretion vectors were constructed and assessed for the expression of heterologous proteins. An anti-Ras single-chain antibody fragment (scFv) coding sequence was fused in-frame to different pre- or prepro-regions, or downstream from a reporter secretory gene ( glucoamylase), separated by a Kex2 protease (Kex2p)-like processing sequence. Both organisms are able to secrete soluble scFv, with yields depending on the nature of the expression cassette, up to levels ranging from 10 to 20 mg l. N-terminal sequence analysis of the purified scFv showed that fusions are correctly processed to the mature scFv by a signal peptidase or a Kex2p-type endoprotease present in and . The scFv protein also retains the capacity to bind to a glutathione-transferase (GST)–Harvey-Ras fusion, indicating that the antibody is functional. These results indicate that the yeasts and have potential for industrial production of soluble and active scFv.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-1-41
2002-01-01
2020-12-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/1/1480041a.html?itemId=/content/journal/micro/10.1099/00221287-148-1-41&mimeType=html&fmt=ahah

References

  1. Ailor E., Pathmanathan J., Jongbloed J. D., Betenbaugh M. J.. 1999; A bacterial signal peptidase enhances processing of a recombinant single chain antibody fragment in insect cells. Biochem Biophys Res Commun255:444–450[CrossRef]
    [Google Scholar]
  2. Andrade E. V., Albuquerque F. C., Moraes L. M., Brigido M. M., Santos-Silva M. A.. 2000; Single-chain Fv with Fc fragment of the human IgG1 tag: construction, Pichia pastoris expression and antigen binding characterization. J Biochem (Tokyo)128:891–895[CrossRef]
    [Google Scholar]
  3. Barth G., Gaillardin C.. 1997; Physiology and genetics of the dimorphic fungus Yarrowia lipolytica . FEMS Microbiol Rev19:219–237[CrossRef]
    [Google Scholar]
  4. van der Berg J. A., van der Laken K. J., van Ooyen A. J. J.. 9 other authors 1990; Kluyveromyces as host for heterologous expression as a glucoamylase-chymosin fusion. Bio/Technology8:135–139[CrossRef]
    [Google Scholar]
  5. Boisrame A., Beckerich J. M., Gaillardin C.. 1996; Sls1p, an endoplasmic reticulum component, is involved in the protein translocation process in the yeast Yarrowia lipolytica . J Biol Chem271:11668–11675[CrossRef]
    [Google Scholar]
  6. Boisrame A., Kabani M., Beckerich J. M., Hartmann E., Gaillardin C.. 1998; Interaction of Kar2p and Sls1p is required for efficient co-translational translocation of secreted proteins in the yeast Yarrowia lipolytica . J Biol Chem273:30903–30908[CrossRef]
    [Google Scholar]
  7. Bui D. M., Kunze I., Forster S., Wartmann T., Horstmann C., Manteuffel R., Kunze G.. 1996a; Cloning and expression of an Arxula adeninivorans glucoamylase gene in Saccharomyces cerevisiae . Appl Microbiol Biotechnol44:610–619[CrossRef]
    [Google Scholar]
  8. Bui D. M., Kunze I., Horstmann C., Schmidt T., Breunig K. D., Kunze G.. 1996b; Expression of the Arxula adeninivorans glucoamylase gene in Kluyveromyces lactis . Appl Microbiol Biotechnol45:102–106[CrossRef]
    [Google Scholar]
  9. Büttner R., Bode R., Birnbaum D.. 1987; Purification and characterization of extracellular glucoamylase from the yeast Trichosporon adeninovorans . J Basic Microbiol27:299–308[CrossRef]
    [Google Scholar]
  10. Cho W. K., Sohn U., Kwak J. W.. 2000; Production and in vitro refolding of a single-chain antibody specific for human plasma apolipoprotein A-I. J Biotechnol77:169–178[CrossRef]
    [Google Scholar]
  11. Chung C. T., Miller R. H.. 1988; A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucleic Acids Res16:3580[CrossRef]
    [Google Scholar]
  12. Conrad U., Fiedler U.. 1998; Compartment-specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol Biol38:101–109[CrossRef]
    [Google Scholar]
  13. Contreras R., Carrez D., Kinghorn J. R., Fiers W., van den Hondel C. A.. 1991; Efficient KEX2-like processing of a glucoamylase-interleukin-6 fusion protein by Aspergillus nidulans and secretion of mature interleukin-6. Biotechnology9:378–381[CrossRef]
    [Google Scholar]
  14. Dohmen R. J., Strasser A. W., Honer C. B., Hollenberg C. P.. 1991; An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast7:691–692[CrossRef]
    [Google Scholar]
  15. Dominguez A., Ferninan E., Sanchez M.. 12 other authors 1998; Non-conventional yeasts as hosts for heterologous protein production. Int Microbiol1:131–142
    [Google Scholar]
  16. Eldin P., Pauza M. E., Hieda Y., Lin G., Murtaugh M. P., Pentel P. R., Pennell C. A.. 1997; High-level secretion of two antibody single chain Fv fragments by Pichia pastoris . J Immunol Methods201:67–75[CrossRef]
    [Google Scholar]
  17. Enderlin C. S., Ogrydziak D. M.. 1994; Cloning, nucleotide sequence and functions of XPR6, which codes for a dibasic processing endoprotease from the yeast Yarrowia lipolytica . Yeast10:67–79[CrossRef]
    [Google Scholar]
  18. Fernandez L. A., De Lorenzo V.. 2001; Formation of disulphide bonds during secretion of proteins through the periplasmic-independent type I pathway. Mol Microbiol40:332–346[CrossRef]
    [Google Scholar]
  19. Fernandez L. A., Sola I., Enjuanes L., de Lorenzo V.. 2000; Specific secretion of active single-chain Fv antibodies into the supernatants of Escherichia coli cultures by use of the hemolysin system. Appl Environ Microbiol66:5024–5029[CrossRef]
    [Google Scholar]
  20. Fischer R., Drossard J., Emans N., Commandeur U., Hellwig S.. 1999; Towards molecular farming in the future: Pichia pastoris -based production of single-chain antibody fragments. Biotechnol Appl Biochem30:117–120
    [Google Scholar]
  21. Fleer R.. 1992; Engineering yeast for high level expression. Curr Opin Biotechnol3:486–496[CrossRef]
    [Google Scholar]
  22. Fleer R., Yeh P., Amellal N.. others 1991; Stable multicopy vectors for high-level secretion of recombinant human serum albumin by Kluyveromyces yeasts. Biotechnology9:968–975[CrossRef]
    [Google Scholar]
  23. Fournier A., Fleer R., Yeh P., Mayaux J. F.. 1990; The primary structure of the 3-phosphoglycerate kinase (PGK) gene from Kluyveromyces lactis . Nucleic Acids Res18:365[CrossRef]
    [Google Scholar]
  24. Freyre F. M., Vazquez J. E., Ayala M., Canaan-Haden L., Bell H., Rodriguez I., Gonzalez A., Cintado A., Gavilondo J. V.. 2000; Very high expression of an anti-carcinoembryonic antigen single chain Fv antibody fragment in the yeast Pichia pastoris . J Biotechnol76:157–163[CrossRef]
    [Google Scholar]
  25. Gaillardin C. M., Charoy V., Heslot H.. 1973; A study of copulation, sporulation and meiotic segregation in Candida lipolytica . Arch Mikrobiol92:69–83[CrossRef]
    [Google Scholar]
  26. Gellissen G., Hollenberg C. P.. 1997; Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae , Hansenula polymorpha and Kluyveromyces lactis – a review. Gene190:87–97[CrossRef]
    [Google Scholar]
  27. Gouka R. J., Punt P. J., van den Hondel C. A.. 1997; Efficient production of secreted proteins by Aspergillus : progress, limitations and prospects. Appl Microbiol Biotechnol47:1–11[CrossRef]
    [Google Scholar]
  28. Kretzschmar T., Aoustin L., Zingel O., Marangi M., Vonach B., Towbin H., Geiser M.. 1996; High-level expression in insect cells and purification of secreted monomeric single-chain Fv antibodies. J Immunol Methods195:93–101[CrossRef]
    [Google Scholar]
  29. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  30. Le Dall M. T., Nicaud J. M., Gaillardin C.. 1994; Multiple-copy integration in the yeast Yarrowia lipolytica . Curr Genet26:38–44[CrossRef]
    [Google Scholar]
  31. Le Gall F., Bove J. M., Garnier M.. 1998; Engineering of a single-chain variable-fragment (scFv) antibody specific for the stolbur phytoplasma (Mollicute) and its expression in Escherichia coli and tobacco plants. Appl Environ Microbiol64:4566–4572
    [Google Scholar]
  32. Lee I. H., Ogrydziak D. M.. 1997; Yarrowia lipolytica SRP54 homolog and translocation of Kar2p. Yeast13:499–513[CrossRef]
    [Google Scholar]
  33. Luo D., Geng M., Schultes B., Ma J., Xu D. Z., Hamza N., Qi W., Noujaim A. A., Madiyalakan R.. 1998; Expression of a fusion protein of scFv-biotin mimetic peptide for immunoassay. J Biotechnol65:225–228[CrossRef]
    [Google Scholar]
  34. Madzak C., Blanchin-Roland S., Cordero Otero R., Gaillardin C.. 1999; Functional analysis of upstream regulating regions from the Yarrowia lipolytica XPR2 promoter. Microbiology145:75–87[CrossRef]
    [Google Scholar]
  35. Madzak C., Treton B., Blanchin-Roland S.. 2000; Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica . J Mol Microbiol Biotechnol2:207–216
    [Google Scholar]
  36. Muller S., Sandal T., Kamp-Hansen P., Dalboge H.. 1998; Comparison of expression systems in the yeasts Saccharomyces cerevisiae , Hansenula polymorpha , Kluyveromyces lactis , Schizosaccharomyces pombe and Yarrowia lipolytica . Cloning of two novel promoters from Yarrowia lipolytica . Yeast14:1267–1283[CrossRef]
    [Google Scholar]
  37. Nishida Y., Torigoe K., Aizawa Y.. 7 other authors 1998; Cloning and expression of a single-chain Fv fragment specific for the human interleukin 18 receptor. Hybridoma17:577–580[CrossRef]
    [Google Scholar]
  38. Park C. S., Chang C. C., Kim J.-Y., Ogrydziak D. M., Ryu D. D. Y.. 1997; Expression, secretion and processing of rice α-amylase in the yeast Yarrowia lipolytica . J Biol Chem272:6876–6881[CrossRef]
    [Google Scholar]
  39. Ridder R., Schmitz R., Legay F., Gram H.. 1995; Generation of rabbit monoclonal antibody fragments from a combinatorial phage display library and their production in the yeast Pichia pastoris . Biotechnology13:255–260[CrossRef]
    [Google Scholar]
  40. Rippmann J. F., Klein M., Hoischen C., Brocks B., Rettig W. J., Gumpert J., Pfizenmaier K., Mattes R., Moosmayer D.. 1998; Procaryotic expression of single-chain variable-fragment (scFv) antibodies: secretion in l-form cells of Proteus mirabilis leads to active product and overcomes the limitations of periplasmic expression in Escherichia coli . Appl Environ Microbiol64:4862–4869
    [Google Scholar]
  41. Rose M. D., Winston F., Hieter P.. 1990; Methods in Yeast Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Sanchez L., Ayala M., Freyre F., Pedroso I., Bell H., Falcon V., Gavilondo J. V.. 1999; High cytoplasmic expression in E. coli , purification, and in vitro refolding of a single chain Fv antibody fragment against the hepatitis B surface antigen. J Biotechnol72:13–20[CrossRef]
    [Google Scholar]
  44. Shusta E. V., Raines R. T., Pluckthun A., Wittrup K. D.. 1998; Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat Biotechnol16:773–777[CrossRef]
    [Google Scholar]
  45. Smallshaw J. E., Georges F., Lee J. S., Waygood E. B.. 1999; Synthesis, cloning and expression of the single-chain Fv gene of the HPr-specific monoclonal antibody, Jel42. Determination of binding constants with wild-type and mutant HPrs. Protein Eng12:623–630[CrossRef]
    [Google Scholar]
  46. Smith D. B., Johnson K. S.. 1988; Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S -transferase. Gene67:31–40[CrossRef]
    [Google Scholar]
  47. Stoger E., Vaquero C., Torres E.. 8 other authors 2000; Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol42:583–590[CrossRef]
    [Google Scholar]
  48. Tokunaga M., Kawamura A., Yonekyu S., Kishida M., Hishinuma F.. 1993; Secretion of mouse alpha-amylase from fission yeast Schizosaccharomyces pombe : presence of chymostatin-sensitive protease activity in the culture medium. Yeast9:379–387[CrossRef]
    [Google Scholar]
  49. Werge T. M., Biocca S., Cattaneo A.. 1990; Intracellular immunization. Cloning and intracellular expression of a monoclonal antibody to the p21ras protein. FEBS Lett274:193–198[CrossRef]
    [Google Scholar]
  50. Wesolowski-Louvel M., Breunig K. D., Fukuhara H.. 1996; Kluyveromyces lactis . In Non Conventional Yeasts in Biotechnology pp139–201 Edited by Wolf K.. Berlin: Springer;
    [Google Scholar]
  51. Whittington H. A., Ashworth L. J., Hawkins R. E.. 1998; Recombinant adenoviral delivery for in vivo expression of scFv antibody fusion proteins. Gene Ther5:770–777[CrossRef]
    [Google Scholar]
  52. Xuan J. W., Fournier P., Declerck N., Chasles M., Gaillardin C.. 1990; Overlapping reading frames at the LYS5 locus in the yeast Yarrowia lipolytica . Mol Cell Biol10:4795–4806
    [Google Scholar]
  53. Yuan Q., Hu W., Pestka J. J., He S. Y., Hart L. P.. 2000; Expression of a functional antizearalenone single-chain Fv antibody in transgenic Arabidopsis plants. Appl Environ Microbiol66:3499–3505[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-1-41
Loading
/content/journal/micro/10.1099/00221287-148-1-41
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error