1887

Abstract

Various chemicals with harmful effects are not themselves toxic, but are metabolized to produce toxic products. One example is methanol in , which is lethal to cells containing the gene, but relatively harmless to mutants. This makes methanol resistance one of the tightest genetic selections in . Loss of also confers cross-resistance to unrelated compounds such as acriflavine and thiabendazole. We have used insertional mutagenesis to demonstrate that the locus encodes the peroxisomal catalase A enzyme. Disruption of the gene results in parallel resistance to acriflavine. Molecular and biochemical studies of several previously characterized methanol-resistant strains reveal that each lacks catalase activity. One allele, , contains a 13 bp deletion which introduces a frameshift in the middle of the gene. The involvement of catalase in methanol resistance in compares with its role in methanol metabolism in yeast and rodents. However, this is the first study to show that catalase is required for the toxicity of acriflavine. Our results imply that acriflavine and thiabendazole are precursors which must be oxidized to generate biologically active species. The gene is also a potentially invaluable negative selectable marker for molecular genetics.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-1-333
2002-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/1/1480333a.html?itemId=/content/journal/micro/10.1099/00221287-148-1-333&mimeType=html&fmt=ahah

References

  1. Alexander S., Cibulsky A. M., Cuneo S. D. 1986; Multiple regulatory genes control expression of a gene family during development of Dictyostelium discoideum . Mol Cell Biol 6:4353–4361
    [Google Scholar]
  2. Andrade A. C., Del Sorbo G., Van Nistelrooy J. G., Waard M. A. 2000; The ABC transporter AtrB from Aspergillus nidulans mediates resistance to all major classes of fungicides and some natural toxic compounds. Microbiology 146:1987–1997
    [Google Scholar]
  3. Boeke J. D., Trueheart J., Natsoulis G., Fink G. R. 1987; 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol 154:164–175
    [Google Scholar]
  4. Cocucci S., Sussman M. 1970; RNA in cytoplasmic and nuclear fractions of cellular slime mold amoebas. J Cell Biol 45:399–407 [CrossRef]
    [Google Scholar]
  5. De Rossi E., Branzoni M., Cantoni R., Milano A., Riccardi G., Ciferri O. 1998; mmr , a Mycobacterium tuberculosis gene conferring resistance to small cationic dyes and inhibitors. J Bacteriol 180:6068–6071
    [Google Scholar]
  6. van Dijken J. P., Veenhuis M., Harder W. 1982; Peroxisomes of methanol-grown yeasts. Ann NY Acad Sci 386:200–216 [CrossRef]
    [Google Scholar]
  7. Garcia M. X., Foote C., Devreotes P. N., Alexander S., Alexander H., van Es S. 2000; Differential developmental expression and cell type specificity of Dictyostelium catalases and their response to oxidative stress and UV-light. Biochim Biophys Acta 1492:295–310 [CrossRef]
    [Google Scholar]
  8. Goodman J. I., Tephly T. R. 1970; Peroxidative oxidation of methanol in human liver: the role of hepatic microbody and soluble oxidases. Res Commun Chem Pathol Pharmacol 1:441–450
    [Google Scholar]
  9. Johnsson K., Schultz P. G. 1994; Mechanistic studies of the oxidation of isoniazid by the catalase peroxidase from Mycobacterium tuberculosis . J Am Chem Soc 116:7425–7426 [CrossRef]
    [Google Scholar]
  10. Karinje K. U., Ogata M. 1990; Methanol metabolism in acatalasemic mice. Physiol Chem Phys Med NMR 22:193–198
    [Google Scholar]
  11. Katz E. R., Kao V. 1974; Evidence for mitotic recombination in the cellular slime mold Dictyostelium discoideum . Proc Natl Acad Sci USA 71:4025–4026 [CrossRef]
    [Google Scholar]
  12. Kavet R., Nauss K. M. 1990; The toxicity of inhaled methanol vapors. Crit Rev Toxicol 21:21–50 [CrossRef]
    [Google Scholar]
  13. Klyachko K. A., Neyfakh A. A. 1998; Paradoxical enhancement of the activity of a bacterial multidrug transporter caused by substitutions of a conserved residue. J Bacteriol 180:2817–2821
    [Google Scholar]
  14. Kruse J. A. 1992; Methanol poisoning. Intensive Care Med 18:391–397 [CrossRef]
    [Google Scholar]
  15. Kuspa A., Loomis W. F. 1992; Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA. Proc Natl Acad Sci USA 89:8803–8807 [CrossRef]
    [Google Scholar]
  16. Lee S.-K., Yu S.-L., Alexander H., Alexander S. 1996; Increasing the specificity of colony hybridization when using heterologous probes. Bio/Techniques 21:630–632
    [Google Scholar]
  17. Liesivuori J., Savolainen H. 1991; Methanol and formic acid toxicity: biochemical mechanisms. Pharmacol Toxicol 69:157–163 [CrossRef]
    [Google Scholar]
  18. Loomis W. F. 1987; Genetic tools for Dictyostelium discoideum . Methods Cell Biol 28:31–65
    [Google Scholar]
  19. Loomis W. F., Welker D., Hughes J., Maghakian D., Kuspa A. 1995; Integrated maps of the chromosomes in Dictyostelium discoideum . Genetics 141:147–157
    [Google Scholar]
  20. Ma D., Cook D. N., Hearst J. E., Nikaido H. 1994; Efflux pumps and drug resistance in gram-negative bacteria. Trends Microbiol 2:489–493 [CrossRef]
    [Google Scholar]
  21. Madigan S., Katz E. 1989; Identification and characterization of catA , a mutation causing catalase deficiency in Dictyostelium discoideum . J Bacteriol 171:1492–1495
    [Google Scholar]
  22. Martin-Amat G., McMartin K. E., Hayreh S. S., Hayreh M. S., Tephly T. R. 1978; Methanol poisoning: ocular toxicity produced by formate. Toxicol Appl Pharmacol 45:201–208 [CrossRef]
    [Google Scholar]
  23. Masaoka Y., Ueno Y., Morita Y., Kuroda T., Mizushima T., Tsuchiya T. 2000; A two-component multidrug efflux pump, EbrAB, in Bacillus subtilis . J Bacteriol 182:2307–2310 [CrossRef]
    [Google Scholar]
  24. Miesel L., Rozwarski D. A., Sacchettini J. C., Jacobs W. R. Jr 1998; Mechanisms for isoniazid action and resistance. Novartis Found Symp 217:209–220
    [Google Scholar]
  25. Nakaune R., Adachi K., Nawata O., Tomiyama M., Akutsu K., Hibi T. 1998; A novel ATP-binding cassette transporter involved in multidrug resistance in the phytopathogenic fungus Penicillium digitatum . Appl Environ Microbiol 64:3983–3988
    [Google Scholar]
  26. Pereira M., Fachin A. L., Martinez-Rossi N. M. 1998; The gene that determines resistance to tioconazole and to acridine derivatives in Aspergillus nidulans may have a corresponding gene in Trichophyton rubrum . Mycopathologia 143:71–75 [CrossRef]
    [Google Scholar]
  27. Podgorski G., Deering R. A. 1980; Quantitation of induced mutation in Dictyostelium discoideum : characterization and use of a methanol-resistance mutation assay. Mutat Res 74:459–468 [CrossRef]
    [Google Scholar]
  28. Rothman F. G., Alexander E. T. 1975; Parasexual genetic analysis of the cellular slime mold Dictyostelium discoideum A3. Genetics 80:715–731
    [Google Scholar]
  29. Rozwarski D. A., Grant G. A., Barton D. H. R., Sacchettini J. C., Jacobs W. R. Jr 1998; Modification of the NADH of the isoniazid target ( Inh A) from Mycobacterium tuberculosis . Science 279:98–102 [CrossRef]
    [Google Scholar]
  30. Sussman M. 1987; Cultivation and synchronous morphogenesis of Dictyostelium under controlled experimental conditions. Methods Cell Biol 28:9–29
    [Google Scholar]
  31. Tephly T. R. 1991; The toxicity of methanol. Life Sci 48:1031–1041 [CrossRef]
    [Google Scholar]
  32. Valentine W. M. 1990; Toxicology of selected pesticides, drugs, and chemicals. Short-chain alcohols. Vet Clin N Am Small Anim Pract 20:515–523 [CrossRef]
    [Google Scholar]
  33. Veenhuis M., Van Dijken J. P., Harder W. 1983; The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts. Adv Microb Physiol 24:1–82
    [Google Scholar]
  34. Welker D. L., Deering R. A. 1976; Genetic analysis of radiation-sensitive mutations in the slime mould Dictyostelium discoideum . J Gen Microbiol 97:1–10 [CrossRef]
    [Google Scholar]
  35. Williams K. L., Kessin R. H., Newell P. C. 1974; Parasexual genetics in Dictyostelium discoideum : mitotic analysis of acriflavin resistance and growth in axenic medium. J Gen Microbiol 84:59–69 [CrossRef]
    [Google Scholar]
  36. Williams R. S., Eames M., Ryves W. J., Viggars J., Harwood A. J. 1999; Loss of a prolyl oligopeptidase confers resistance to lithium by elevation of inositol (1,4,5) trisphosphate. EMBO J 18:2734–2745 [CrossRef]
    [Google Scholar]
  37. van der Zel A., Dadoo R., Geer B. W., Heinstra P. W. 1991; The involvement of catalase in alcohol metabolism in Drosophila melanogaster larvae. Arch Biochem Biophys 287:121–127 [CrossRef]
    [Google Scholar]
  38. Zhang Y., Heym B., Allen B., Young D., Cole S. 1992; The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis . Nature 358:591–593 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-1-333
Loading
/content/journal/micro/10.1099/00221287-148-1-333
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error