Reductive iron uptake by : role of copper, iron and the regulator Free

Abstract

High-affinity iron uptake by a ferrous permease in the opportunistic pathogen is required for virulence. Here this iron uptake system has been characterized by investigating three distinct activities: an externally directed surface ferric reductase, a membrane-associated PPD (-phenylenediamine) oxidase and a cellular ferrous iron transport activity. Copper was required for the PPD oxidase and ferrous transport activities. In contrast, copper was not required for iron uptake from siderophores. Addition of iron to the growth medium repressed ferric reductase and ferrous transport, indicating homeostatic regulation. To identify the genes involved, orthologous mutants of were transformed with a genomic library of . , a gene with sequence similarity to ferric reductases, restored reductase activity to the orthologous mutant. and , genes with homology to ferrous permeases, conferred ferrous transport activity to the orthologous mutant. However, neither a genomic library nor , a multicopper oxidase homologue and candidate gene for the PPD oxidase, complemented the mutant, possibly because of problems with targeting or assembly. Transcripts for , and were strongly repressed by iron, whereas the transcript was induced by iron. Deletion of the regulator perturbed the homeostatic control of reductive iron uptake. Incidentally, iron starvation was noted to induce flavin production and this was misregulated in the absence of control. The opposite regulation of two iron permease genes and the role of indicate that the process of iron acquisition by may be more complex and potentially more adaptable than by

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-1-29
2002-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/1/1480029a.html?itemId=/content/journal/micro/10.1099/00221287-148-1-29&mimeType=html&fmt=ahah

References

  1. Agatep R., Kirkpatrick R. D., Parchaliuk D. L., Woods R. A., Gietz R. D. 1998; Transformation of Saccharomyces cerevisiae by the lithium acetate/single-stranded carrier DNA/polyethylene glycol (LiAc/ss-DNA/PEG)protocol. Tech Tips Online . http://tto.trends.com
  2. Ardon O., Bussey H., Philpott C., Ward D. M., Davis-Kaplan S., Verroneau S., Jiang B., Kaplan J. 2001; Identification of a Candida albicans ferrichrome transporter and its characterization by expression in Saccharomyces cerevisiae . J Biol Chem in press
    [Google Scholar]
  3. Askwith C. C., Eide D., Van Ho A., Bernard P. S., Li L., Davis-Kaplan S., Sipe D. M., Kaplan J. 1994; The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76:403–410 [CrossRef]
    [Google Scholar]
  4. Askwith C. C., Kaplan J., de Silva D. 1996; Molecular biology of iron acquisition by Saccharomyces cerevisiae . Mol Microbiol 20:27–34 [CrossRef]
    [Google Scholar]
  5. Becker D. M., Guarente L. 1991; High-efficiency transformation of yeast by electroporation. Methods Enzymol 194:182–187
    [Google Scholar]
  6. Bonaccorsi di Patti M. C., Pascarella S., Catalucci D., Calabrese L. 1999; Homology modeling of the multicopper oxidase Fet3 gives new insights in the mechanism of iron transport in yeast. Protein Eng 12:895–897 [CrossRef]
    [Google Scholar]
  7. Braun B. R., Johnson A. D. 1997; Control of filament formation in Candida albicans by the transcriptional repressor TUP1 . Science 277:105–109 [CrossRef]
    [Google Scholar]
  8. Braun B. R., Johnson A. D. 2000; TUP1 , CPH1 and EFG1 make independent contributions to filamentation in Candida albicans . Genetics 155:57–67
    [Google Scholar]
  9. Braun B. R., Head W. S., Wang M. X., Johnson A. D. 2000; Identification and characterization of TUP1 -regulated genes in Candida albicans . Genetics 156:31–44
    [Google Scholar]
  10. Brown A. J., Gow N. A. 1999; Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol 7:333–338 [CrossRef]
    [Google Scholar]
  11. Coves J., Fontecave M. 1993; Reduction and mobilization of iron by a NAD(P)H: flavin oxidoreductase from Escherichia coli . Eur J Biochem 211:635–641 [CrossRef]
    [Google Scholar]
  12. Dancis A., Klausner R. D., Hinnebusch A. G., Barriocanal J. G. 1990; Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae . Mol Cell Biol 10:2294–2301
    [Google Scholar]
  13. Dancis A., Yuan D. S., Haile D., Askwith C., Eide D., Moehle C., Kaplan J., Klausner R. D. 1994; Molecular characterization of a copper transport protein in S. cerevisiae : an unexpected role for copper in iron transport. Cell 76:393–402 [CrossRef]
    [Google Scholar]
  14. De Bernardis F., Muhlschlegel F. A., Cassone A., Fonzi W. A. 1998; The pH of the host niche controls gene expression in and virulence of Candida albicans . Infect Immun 66:3317–3325
    [Google Scholar]
  15. Eck R., Hundt S., Hartl A., Roemer E., Kunkel W. 1999; A multicopper oxidase gene from Candida albicans : cloning, characterization and disruption. Microbiology 145:2415–2422
    [Google Scholar]
  16. Ernst J. F. 2000; Transcription factors in Candida albicans – environmental control of morphogenesis. Microbiology 146:1763–1774
    [Google Scholar]
  17. Fedorovich D., Protchenko O., Lesuisse E. 1999; Iron uptake by the yeast Pichia guilliermondii . Flavinogenesis and reductive iron assimilation are co-regulated processes. Biometals 12:295–300 [CrossRef]
    [Google Scholar]
  18. Finegold A. A., Shatwell K. P., Segal A. W., Klausner R. D., Dancis A. 1996; Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J Biol Chem 271:31021–31024 [CrossRef]
    [Google Scholar]
  19. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans . Genetics 134:717–728
    [Google Scholar]
  20. Fridkin S. K., Jarvis W. R. 1996; Epidemiology of nosocomial fungal infections. Clin Microbiol Rev 9:499–511
    [Google Scholar]
  21. Gillum A. M., Tsay E. Y., Kirsch D. R. 1984; Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198:179–182 [CrossRef]
    [Google Scholar]
  22. Hammacott J. E., Williams P. H., Cashmore A. M. 2000; Candida albicans CFL1 encodes a functional ferric reductase activity that can rescue a Saccharomyces cerevisiae fre1 mutant. Microbiology 146:869–876
    [Google Scholar]
  23. Ismail A., Bedell G. W., Lupan D. M. 1985; Siderophore production by the pathogenic yeast, Candida albicans . Biochem Biophys Res Commun 130:885–891 [CrossRef]
    [Google Scholar]
  24. Kohler J. R., Fink G. R. 1996; Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc Natl Acad Sci USA 93:13223–13228 [CrossRef]
    [Google Scholar]
  25. Kuhn D. E., Baker B. D., Lafuse W. P., Zwilling B. S. 1999; Differential iron transport into phagosomes isolated from the RAW264.7 macrophage cell lines transfected with Nramp1Gly169 or Nramp1Asp169. J Leukoc Biol 66:113–119
    [Google Scholar]
  26. Lesuisse E., Simon-Casteras M., Labbe P. 1998; Siderophore-mediated iron uptake in Saccharomyces cerevisiae : the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology 144:3455–3462 [CrossRef]
    [Google Scholar]
  27. Lesuisse E., Blaiseau P. L., Dancis A., Camadro J.-M. 2001; Siderophore uptake and use by the yeast Saccharomyces cerevisiae . Microbiology 147:289–298
    [Google Scholar]
  28. Lesuisse E., Knight S. A. B., Camadro J.-M., Dancis A. 2002; Siderophore uptake by Candida albicans : relationship to the dimorphic transition and comparison with Saccharomyces cerevisiae . Yeast in press
    [Google Scholar]
  29. Liu H., Kohler J., Fink G. R. 1994; Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266:1723–1726 erratum 267, 17 [CrossRef]
    [Google Scholar]
  30. Lo H. J., Kohler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. 1997; Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949 [CrossRef]
    [Google Scholar]
  31. Lorenz M. C., Fink G. R. 2001; The glyoxylate cycle is required for fungal virulence. Nature 412:83–86 [CrossRef]
    [Google Scholar]
  32. Manns J. M., Mosser D. M., Buckley H. R. 1994; Production of a hemolytic factor by Candida albicans . Infect Immun 62:5154–5156
    [Google Scholar]
  33. Massey V. 2000; The chemical and biological versatility of riboflavin. Biochem Soc Trans 28:283–296 [CrossRef]
    [Google Scholar]
  34. Mitchell A. P. 1998; Dimorphism and virulence in Candida albicans . Curr Opin Microbiol 1:687–692 [CrossRef]
    [Google Scholar]
  35. Prasad R., De Wergifosse P., Goffeau A., Balzi E. 1995; Molecular cloning and characterization of a novel gene of Candida albicans , CDR1 , conferring multiple resistance to drugs and antifungals. Current Genetics 27:320–329 [CrossRef]
    [Google Scholar]
  36. Ramanan N., Wang Y. 2000; A high-affinity iron permease essential for Candida albicans virulence. Science 288:1062–1064 [CrossRef]
    [Google Scholar]
  37. Ratledge C., Dover L. G. 2000; Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941 [CrossRef]
    [Google Scholar]
  38. Shatwell K. P., Dancis A., Cross A. R., Klausner R. D., Segal A. W. 1996; The FRE1 ferric reductase of Saccharomyces cerevisiae is a cytochrome b similar to that of NADPH oxidase. J Biol Chem 271:14240–14244 [CrossRef]
    [Google Scholar]
  39. Smith R. L., Johnson A. D. 2000; Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 25:325–330 [CrossRef]
    [Google Scholar]
  40. Spizzo T., Byersdorfer C., Duesterhoeft S., Eide D. 1997; The yeast FET5 gene encodes a FET3 -related multicopper oxidase implicated in iron transport. Mol Gen Genet 256:547–556
    [Google Scholar]
  41. Stearman R., Dancis A., Klausner R. D. 1998; YIpDCE1 – An integrating plasmid for dual constitutive expression in yeast. Gene 212:197–202 [CrossRef]
    [Google Scholar]
  42. Stearman R., Yuan D. S., Yamaguchi-Iwai Y., Klausner R. D., Dancis A. 1996; A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271:1552–1557 [CrossRef]
    [Google Scholar]
  43. Susin S., Abian J., Sanchez-Baeza F., Peleato M. L., Abadia A., Gelpi E., Abadia J. 1993; Riboflavin 3′- and 5′-sulfate, two novel flavins accumulating in the roots of iron-deficient sugar beet ( Beta vulgaris ). J Biol Chem 268:20958–20965
    [Google Scholar]
  44. Vazquez-Torres A., Balish E. 1997; Macrophages in resistance to candidiasis. Microbiol Mol Biol Rev 61:170–192
    [Google Scholar]
  45. Warnock D. W. 1998; Fungal infections in neutropenia: current problems and chemotherapeutic control. J Antimicrob Chemother 41 Suppl: D95–105
    [Google Scholar]
  46. Yamaguchi-Iwai Y., Stearman R., Dancis A., Klausner R. D. 1996; Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. EMBO J 15:3377–3384
    [Google Scholar]
  47. Yuan D. S., Stearman R., Dancis A., Dunn T., Beeler T., Klausner R. D. 1995; The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci USA 92:2632–2636 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-1-29
Loading
/content/journal/micro/10.1099/00221287-148-1-29
Loading

Data & Media loading...

Most cited Most Cited RSS feed