1887

Abstract

A phosphatase-overproducing sp. (NCIMB 40259) was grown in an air-lift reactor in steady-state continuous culture under limitation of carbon, phosphorus or nitrogen. Substantial biofilm formation, and the highest phosphatase activity, were observed under lactose limitation. However, the total amount of biofilm wet biomass and the phosphatase specific activity were reduced in phosphorus- or nitrogen-limited cultures or when glucose was substituted for lactose as the limiting carbon source. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) showed differences in cell and biofilm morphology in relation to medium composition. Electron microscopy suggested that the differences in biofilm formation may relate to differential expression of fimbriae on the cell surface.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-1-277
2002-01-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/1/1480277a.html?itemId=/content/journal/micro/10.1099/00221287-148-1-277&mimeType=html&fmt=ahah

References

  1. Allan V. J. M., Macaskie L. E., Callow M. E. 1999; Development of a pH gradient within a biofilm is dependent upon the limiting nutrient. Biotechnol Lett 21:407–413
    [Google Scholar]
  2. Austin J. W., Sanders G., Kay W. W., Collinson S. K. 1998; Thin aggregative fimbriae enhance Salmonella enteritidis biofilm. FEMS Microbiol Lett 162:2295–2301
    [Google Scholar]
  3. de Beer D., Roe F., Lewandowski Z. 1994; Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng 43:1131–1138 [CrossRef]
    [Google Scholar]
  4. Bonthrone K. M., Quarmby J., Hewitt C. J., Allan V. M. J., Paterson-Beedle M., Kennedy J. F., Macaskie L. E. 2000; The effect of the growth medium on the composition and metal binding behaviour of the extracellular polymeric material of a metal-accumulating Citrobacter sp. Environ Technol 21:123–134 [CrossRef]
    [Google Scholar]
  5. Breedveld M. W., Benesi A. J., Marco M. L., Miller K. J. 1995; Effect of phosphate limitation on the synthesis of periplasmic cyclic β-(1,2)-glucans. Appl Environ Microbiol 61:1045–1053
    [Google Scholar]
  6. Bright J. J., Fletcher M. 1983; Amino acid assimilation and electron transport system activity in attached and free living marine bacteria. Appl Environ Microbiol 45:818–825
    [Google Scholar]
  7. Bryers J. D. 1994; Biofilms and the technological implications of microbial cell adhesion. Colloids Surf B Biointerfaces 2:9–23 [CrossRef]
    [Google Scholar]
  8. Butler A. J., Hallett D. S., Macaskie L. E. 1991; Phosphatase production by a Citrobacter sp. growing in batch culture and use of batch cultures to investigate some limitations in the use of polyacrylamide gel-immobilised cells for product release. Enzyme Microb Technol 13:716–721 [CrossRef]
    [Google Scholar]
  9. Chakrabarty A. M. 1996 Why and how P. aeruginosa makes alginate under starvation conditions.In Microbial Biofilms (Proceedings, ASM Conference, Snowbird, Utah, USA) Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., de Beer D., James G. 1994; Biofilms: the customised microniche. J Bacteriol 176:2137–2142
    [Google Scholar]
  11. Curtiss R.III., Kelly S. M. 1987; Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infect Immun 55:3035–3043
    [Google Scholar]
  12. Dalton H. M., Poulsen L. K., Halasz P., Angles M. L., Goodman A. E., Marshall K. C. 1994; Substrate-induced morphological changes in a marine bacterium and their relevance to biofilm structure. J Bacteriol 176:6900–6906
    [Google Scholar]
  13. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P. 1998; The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298 [CrossRef]
    [Google Scholar]
  14. Edwards R. A., Schifferli D. M. 1997; Differential regulation of fasA and fasH expression of Escherichia coli 987P fimbriae by environmental cues. Mol Microbiol 25:797–809 [CrossRef]
    [Google Scholar]
  15. Ellwood D. C., Keevil C. W., Marsh P. D., Brown C. M., Wardell J. D. 1982; Surface-associated growth. Philos Trans R Soc Lond Ser B Biol Sci 297:517–523 [CrossRef]
    [Google Scholar]
  16. Estermann E. F., Peterson G. H., McLaren A. D. 1954; Digestion of clay–protein, lignin–protein and silica–protein complexes by enzymes and bacteria. Proc Soil Sci Soc Am 23:31–36
    [Google Scholar]
  17. Finlay J. A., Allan V. J. M., Conner A., Callow M. E., Basnakova G., Macaskie L. E. 1999; Phosphate release and heavy metal accumulation by biofilm-immobilised and chemically-coupled cells of a Citrobacter sp. pre-grown in continuous culture. Biotechnol Bioeng 63:87–97 [CrossRef]
    [Google Scholar]
  18. Fletcher M. 1991; The physiological activity of bacteria attached to solid surfaces. Adv Microb Physiol 32:53–80
    [Google Scholar]
  19. Goluszko P., Popov V., Selvarangan R., Nowicki S., Pham T., Norwicki B. J. 1997; The Dr fimbriae operon of uropathogenic Escherichia coli mediate microtubule-dependent invasion to the HeLa epithelial line. J Infect Dis 176:158–67 [CrossRef]
    [Google Scholar]
  20. Gordon A., Gerchakov S. M., Millero F. J. 1983; Effects of inorganic particles on metabolism by a periphytic marine bacterium. Appl Environ Microbiol 45:411–417
    [Google Scholar]
  21. Hambling S. G., Macaskie L. E., Dean A. C. R. 1987; Phosphatase synthesis in a Citrobacter sp . . J Gen Microbiol 133:2743–2749
    [Google Scholar]
  22. Harder W., Dijkhuizen L. 1983; Physiological responses to nutrient limitation. Annu Rev Microbiol 37:1–23 [CrossRef]
    [Google Scholar]
  23. Harshey R. M. 1994; Bees aren’t the only ones: swarming in Gram-negative bacteria. Mol Microbiol 13:393–394
    [Google Scholar]
  24. Harshey R. M., Matsuyama T. 1994; Dimorphic transition in E. coli and S. typhimurium : surface induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci USA 91:8631–8635 [CrossRef]
    [Google Scholar]
  25. Herbert D. 1961; The chemical composition of micro-organisms as a function of their environment. Symp Soc Exp Biol Med 38:391–416
    [Google Scholar]
  26. Huang C., Peretti S. W., Bryers J. D. 1994; Effects of medium carbon-to-nitrogen ratio on biofilm formation and plasmid stability. Biotechnol Bioeng 44:329–336 [CrossRef]
    [Google Scholar]
  27. Huang C. T., Xu K. D., McFeters G. A., Stewart P. S. 1998; Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation. Appl Environ Microbiol 64:1526–1531
    [Google Scholar]
  28. James G. A., Beaudette L., Costerton J. W. 1995; Interspecies bacterial interactions in biofilms. J Ind Microbiol 15:257–262 [CrossRef]
    [Google Scholar]
  29. Janning K. J., Harremoes P., Nielson M. 1995; Evaluating and modelling the kinetics in a full scale submerged denitrification filter. Water Sci Technol 32:115–13
    [Google Scholar]
  30. Jensen R. H., Woolfolk C. A. 1985; Formation of filaments by Pseudomonas putida. Appl Environ Microbiol 50:364–372
    [Google Scholar]
  31. Jeong B. C., Macaskie L. E. 1999; Production of two phosphatases by a Citrobacter sp. grown in batch and continuous culture. Enzyme Microb Technol 24:218–224 [CrossRef]
    [Google Scholar]
  32. Jeong B. C., Bonthrone K. M., Hawes C., Macaskie L. E. 1997; Localization of enzymically enhanced heavy metal accumulation by Citrobacter sp. and metal accumulation in vitro by liposomes containing entrapped enzyme. Microbiology 143:2497–2507 [CrossRef]
    [Google Scholar]
  33. Keevil C. W., Walker J. T. 1992; Nomarski DIC microscopy and image analysis of biofilm. Bin Comput Microbiol 4:93–95
    [Google Scholar]
  34. Korber D. R., Lawrence J. R., Lappin-Scott H. M., Costerton J. W. 1995; Growth of microorganisms on surfaces. In Microbial Biofilms pp 1–38 Edited by Lappin-Scott H. Costerton J. W. Cambridge: Cambridge University Press;
    [Google Scholar]
  35. Kugaprasatham S., Nagaoka H., Ohgaki S. 1992; Effect of turbulence on nitrifying biofilms at non-limiting substrate conditions. Water Res 26:1629–1638 [CrossRef]
    [Google Scholar]
  36. Lawrence J. R., Korber D. R., Hoyle B. H., Costerton J. W., Caldwell D. E. 1991; Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567
    [Google Scholar]
  37. Lewandowski Z. 1998; Structure and function of bacterial biofilms. Corrosion 295:1–15
    [Google Scholar]
  38. van Loosdrecht M. C. M., Eikelboom D., Gjaltema A., Mulder A., Tijhuis L., Heijnen J. J. 1995; Biofilm structures. Water Sci Technol 32:35–43
    [Google Scholar]
  39. Low D., Braaten B., van der Woude M. 1996; Fimbriae. In Escherichia coli and Salmonella pp 146–158 Edited by Neidhardt F. C.and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  40. Macaskie L. E., Empson R. M., Lin F., Tolley M. R. 1995; Enzymically-mediated uranium accumulation and uranium recovery using a Citrobacter sp. immobilised as a biofilm within a plug-flow reactor. J Chem Technol Biotechnol 63:1–16 [CrossRef]
    [Google Scholar]
  41. Macaskie L. E., Bonthrone K. M., Yong P., Goddard D. 2000; Enzymatically-mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipo-polysaccharide and associated phosphatase in biomineral formation. Microbiology 146:1855–1867
    [Google Scholar]
  42. Miller S. I., Kukral A. M., Mekalanos J. J. 1989; A two component regulatory system ( phoP/phoQ ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci USA 86:5054–5058 [CrossRef]
    [Google Scholar]
  43. Mueller R. F. 1996; Bacterial transport and colonisation in low nutrient environments . Water Res 30:2681–2690 [CrossRef]
    [Google Scholar]
  44. Murga R., Stewart P. S., Daly D. 1995; Quantitative analysis of biofilm thickness variability. Biotechnol Bioeng 45:503–510 [CrossRef]
    [Google Scholar]
  45. Neidhardt F. C., Ingraham J. L., Schaechter M. 1990; Regulation of gene expression: multigene systems and global regulation. In Physiology of the Bacterial Cell pp 351–388 Edited by Neidhardt F. C. Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  46. Ohashi A., Mobarry B., Manem J. A., Stahl D. A., Rittmann B. E., Viraj de Silva D. J. 1995; Influence of substrate C/N ratio on the structure of multispecies biofilms consisting of nitrifiers and heterotrophs. Water Sci Technol 32:75–84
    [Google Scholar]
  47. Olsen A., Jonsson A., Normark S. 1989; Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338:652–655 [CrossRef]
    [Google Scholar]
  48. Olsen A., Arnqvist A., Hammar M., Sukupolvi S., Nomark S. 1993; The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA , the subunit gene of fibronectin-binding curli in Escherichia coli. Mol Microbiol 7:523–536 [CrossRef]
    [Google Scholar]
  49. O’Toole G. A., Kolter R. 1998; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–305 [CrossRef]
    [Google Scholar]
  50. Pattanapipitpaisal P., Mabbett A. N., Finlay J. A. 10 other authors 2001; Reduction of Cr(VI) and bioaccumulation of chromium by Gram positive and Gram negative microorganisms not previously exposed to Cr-stress. Environ Technol in press
    [Google Scholar]
  51. Peyton B. M. 1996; Effects of shear stress and substrate loading rate on Pseudomonas aeruginosa biofilm thickness and density. Water Res 30:29–36 [CrossRef]
    [Google Scholar]
  52. Pratt L. A., Kolter R. 1998; Genetic analysis of Escherichia coli biofilm formation, roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293 [CrossRef]
    [Google Scholar]
  53. Schmoll T., Ott M., Oudega B., Hacker J. 1990; Use of a wild-type gene fusion to determine the influence of environmental conditions on expression of the S fimbrial adhesin in an Escherichia coli pathogen. J Bacteriol 172:5103–5111
    [Google Scholar]
  54. Sharon N. 1984; Lectin-like bacterial adherence to animal cells. In Attachment of Organisms to the Gut Mucosa pp 129–147 Edited by Boedeker E. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  55. Stewart P. S., Peyton B. M., Drury W. J., Murga R. 1993; Quantitative observations of heterogeneities in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 59:327–329
    [Google Scholar]
  56. Stickler D. 1999; Biofilms. Curr Opin Microbiol 2:270–275 [CrossRef]
    [Google Scholar]
  57. Tait M. I., Sutherland I. W., Clarkesturman A. J. 1986; Effect of growth conditions on the production, composition and viscosity of Xanthomonas campestris exopolysaccharide. J Gen Microbiol 132:1483–1492
    [Google Scholar]
  58. Tempest D. W., Wouters J. T. M. 1981; Properties and performance of microorganisms in chemostat culture. Enzyme Microb Technol 3:283–290 [CrossRef]
    [Google Scholar]
  59. Vanmaele R. P., Armstrong G. D. 1997 The effect of carbon source on localised adherence of enteropathogenic Escherichia coli Infect Immun 65:1408–1413
    [Google Scholar]
  60. Vidal O., Longrin R., Prigent-Combarat C., Dorel C., Hooreman M., Lejeune P. 1998; Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180:2442–2449
    [Google Scholar]
  61. Wimpenny J. W. T., Colasanti R. 1997; A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol Ecol 22:1–16 [CrossRef]
    [Google Scholar]
  62. van der Woude M. W., de Graf F. K., van Verseveld H. W. 1989; Production of the fimbrial adhesin 987P by enterotoxigenic Escherichia coli during growth under controlled conditions in a chemostat. J Gen Microbiol 135:3421–3429
    [Google Scholar]
  63. Xie H., Cai S., Lamont R. J. 1997; Environmental regulation of fimbrial gene expression in Porphyromonas gingivalis. Infect Immun 65:2265–2271
    [Google Scholar]
  64. Zhan H., Chang Lee C., Leigh J. A. 1991; Induction of the second exopolysaccharide (EPSb) in Rhizobium meliloti SU-47 by low phosphate concentrations. J Bacteriol 173:7391–7394
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-1-277
Loading
/content/journal/micro/10.1099/00221287-148-1-277
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error