1887

Abstract

Plasmid pHT128, a derivative of the broad-host-range IncQ vector pGSS33, was successfully introduced into . Under optimal conditions, pHT128 was transferred from to by triparental conjugation at a frequency of 10–10. The copy number of pHT128 in was almost the same as in , in which the copy number of IncQ plasmids per chromosome is estimated to be 10. pHT128 was maintained as an episome in in the presence of chloramphenicol, a marker of the plasmid. It was also shown that an or gene cloned on pHT128 could be expressed in under control of the promoter and could complement a mutation of or , respectively. In addition, the conjugational introduction of pHT128 into was demonstrated to be independent of natural transformation competence. All the results indicate that pHT128 is a useful vector for as a new genetical tool.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-1-229
2002-01-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/1/1480229a.html?itemId=/content/journal/micro/10.1099/00221287-148-1-229&mimeType=html&fmt=ahah

References

  1. Achtman M., Neibert M., Crowe B. A.. 8 other authors 1988; Purification and characterization of eight class 5 outer membrane protein variants from a clone of Neisseria meningitidis serogroup A. J Exp Med168:507–525[CrossRef]
    [Google Scholar]
  2. Barth P. T., Grinter N. J.. 1974; Comparison of the deoxyribonucleic acid molecular weights and homologies of plasmids conferring linked resistance to streptomycin and sulfonamides. J Bacteriol120:618–630
    [Google Scholar]
  3. Barth P. T., Tobin L., Sharpe G. S.. 1981; Development of broad host range plasmid vectors. In Molecular Biology, Pathogenicity and Ecology of Bacterial Plasmids pp439–448 Edited by Levy S. B.. Clowes R. C., Koenig E. L.. New York: Plenum;
    [Google Scholar]
  4. Bhatti A. R., O’Hara K., White L. A., Bryan L. E.. 1981; Presence of plasmid deoxyribonucleic acid in Neisseria meningitidis. . FEMS Microbiol Lett10:175–177[CrossRef]
    [Google Scholar]
  5. Butler C. A., Gotschlich E. C.. 1991; High-frequency mobilization of broad-host-range plasmids into Neisseria gonorrhoeae requires methylation in the donor. J Bacteriol173:5793–5799
    [Google Scholar]
  6. Claus H., Stoevesandt J., Frosch M., Vogel U.. 2001; Genetic isolation of meningococci of the electrophoretic type 37 complex. J Bacteriol183:2570–2575[CrossRef]
    [Google Scholar]
  7. Dehio C., Gray-Owen S. D., Meyer T. F.. 1998; The role of neisserial opa proteins in interactions with host cells. Trends Microbiol6:489–495[CrossRef]
    [Google Scholar]
  8. Dillon J. R., Pauze M., Yeung K.-H.. 1983; Spread of penicillinase-producing and transfer plasmids from the gonococcus to Neisseria meningitidis. Lancet1:8328779–781
    [Google Scholar]
  9. Erwin A. L., Stephens D. S.. 1995; Identification and characterization of auxotrophs of Neisseria meningitidis produced by Tn 916 mutagenesis. FEMS Microbiol Lett127:223–228[CrossRef]
    [Google Scholar]
  10. Facinelli B., Varaldo P. E.. 1987; Plasmid-mediated sulfonamide resistance in Neisseria meningitidis. Antimicrob Agents Chemother. 311642–1643[CrossRef]
  11. Genco C. A., Knapp J. S., Clark V. L.. 1984; Conjugation of plasmids of Neisseria gonorrhoeae to other Neisseria species: potential reservoirs for the β-lactamase plasmid. J Infect Dis150:397–401[CrossRef]
    [Google Scholar]
  12. Hass R., Karhs A. F., Facius D., Allmeier H., Schmitt R., Meyer T. F.. 1993; TnMax – a versatile mini-transposon for the analysis of cloned genes and shuttle mutagenesis. Gene130:23–31[CrossRef]
    [Google Scholar]
  13. Hilse R., Stoevesandt J., Caugant D. A., Claus H., Frosch M., Vogel U.. 2000; Distribution of the meningococcal insertion sequence IS 1301 in clonal lineages of Neisseria meningitidis. . Epidemiol Infect 124:337–340[CrossRef]
    [Google Scholar]
  14. Ikeda F., Tsuji A., Kaneko Y., Nishida M., Goto S.. 1986; Conjugal transfer of beta-lactamase-producing plasmids of Neisseria gonorrhoeae to Neisseria meningitidis . Microbiol Immunol30:737–742[CrossRef]
    [Google Scholar]
  15. Ison C. A., Bellinger C. M., Walker J.. 1986; Homology of cryptic plasmids of Neisseria gonorrhoeae with plasmids from Neisseria meningitidis and Neisseria lactamica. J Clin Pathol39:1119–1123[CrossRef]
    [Google Scholar]
  16. Jyssum K., Lie S.. 1965; Genetic factors determining competence in transformation of Neisseria meningitidis . 1. A permanent loss of competence. Acta Pathol Microbiol Scand63:306–316
    [Google Scholar]
  17. Kado C. I., Liu S.-T.. 1981; Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol145:1365–1373
    [Google Scholar]
  18. Kathariou S., Stephens D. S., Spellman P., Morse S. A.. 1990; Transposition of Tn 916 to different sites in the chromosome of Neisseria meningitidis : a genetic tool for meningococcal mutagenesis. Mol Microbiol4:729–735[CrossRef]
    [Google Scholar]
  19. Knapp J. S., Johnson S. R., Zenilman J. M., Robert M. C., Morse S. A.. 1988; High-level tetracycline resistance resulting from TetM in strains of Neisseria spp., Kingella denitrificans , and Eikenella corrodens. Antimicrob Agents Chemother32:765–767[CrossRef]
    [Google Scholar]
  20. Kupsch E.-M., Aubel D., Gibbs C. P., Kahrs A. F., Rudel T., Meyer T. F.. 1996; Construction of Hermes shuttle vectors: a versatile system useful for genetic complementation of transformable and non-transformable Neisseria mutants. Mol Gen Genet250:558–569
    [Google Scholar]
  21. Meyer R., Laux R., Boch G., Hinds M., Bayly R., Shapiro J. A.. 1982; Broad-host-range IncP-4 plasmid R1162: effects of deletions and insertions on plasmid maintenance and host range. J Bacteriol152:140–150
    [Google Scholar]
  22. Nassif X., So M.. 1995; Interaction of pathogenic neisseriae with nonphagocytic cells. Clin Microbiol Rev8:376–388
    [Google Scholar]
  23. Nassif X., Puaoi D., So M.. 1991; Transposition of Tn 1545- Δ 3 in the pathogenic neisseriae: a genetic tool for mutagenesis. J Bacteriol173:2147–2154
    [Google Scholar]
  24. Nassif X., Pujol C., Morand P., Eugene E.. 1999; Interactions of pathogenic Neisseria with host cells. Is it possible to assemble the puzzle?. Mol Microbiol32:1124–1132[CrossRef]
    [Google Scholar]
  25. Pansegrau W., Lanka E.. 1987; Conservation of a common ‘backbone’ in the genetic organization of the IncP plasmids RP4 and R751. Nucleic Acids Res15:2385[CrossRef]
    [Google Scholar]
  26. Piffaretti J.-C., Arini A., Frey J.. 1988; pUB307 mobilizes resistance plasmids from Escherichia coli into Neisseria gonorrhoeae. Mol Gen Genet 212:215–218[CrossRef]
    [Google Scholar]
  27. Pintado C., Salvador C., Rotger R., Nombela C.. 1985; Multiresistance plasmid from commensal Neisseria strains. Antimicrob Agents Chemother27:120–124[CrossRef]
    [Google Scholar]
  28. Roberts M. C.. 1989; Plasmids of Neisseria gonorrhoeae and other Neisseria species. Clin Microbiol Rev2:SupplS18–S23
    [Google Scholar]
  29. Rotger R., Rubio F., Nombela C.. 1986; A multi-resistance plasmid isolated from commensal Neisseria species is closely related to the enterobacterial plasmid RSF1010. J Gen Microbiol132:2491–2496
    [Google Scholar]
  30. Ryll R. R., Rudel T., Scheuerpflug I., Barten R., Meyer T. F.. 1997; PilC of Neisseria meningitidis is involved in class II pilus formation and restores pilus assembly, natural transformation competence and adherence to epithelial cells in PilC-deficient gonococci. Mol Microbiol23:879–892[CrossRef]
    [Google Scholar]
  31. Sharpe G. S.. 1984; Broad host range cloning vectors for Gram-negative bacteria. Gene29:93–102[CrossRef]
    [Google Scholar]
  32. Stark M. J. R.. 1987; Multicopy expression vectors carrying the lac repressor gene for regulated high-level expression of genes in Escherichia coli. . Gene 51:255–267[CrossRef]
    [Google Scholar]
  33. Stein D. C.. 1989; Introduction of cloned genes into Neisseria gonorrhoeae. Clin Microbiol Rev2:SupplS146–S149
    [Google Scholar]
  34. Stein D. C., Silver L. E., Clark V. L., Young F. E.. 1983; Construction and characterization of a new shuttle vector, pLES2, capable of functioning in Escherichia coli and Neisseria gonorrhoeae. . Gene 25:241–247[CrossRef]
    [Google Scholar]
  35. Stein D. C., Gregoire S., Piekarowicz A.. 1988; Restriction of plasmid DNA during transformation but not conjugation in Neisseria gonorrhoeae. . Infect Immun 56:112–116
    [Google Scholar]
  36. Stephens D. S., Swartley J. S., Kathariou S., Morse S. A.. 1991; Insertion of Tn 916 in Neisseria meningitidis resulting in loss of group B capsular polysaccharide. Infect Immun59:4097–4102
    [Google Scholar]
  37. Suker J., Morelli G., Wang J.-F., Maiden M. C. J., Feavers l. M., Achtman M.. 1994; The porA gene in serogroup A meningococci: evolutionary stability and mechanism of genetic variation. Mol Microbiol12:253–265[CrossRef]
    [Google Scholar]
  38. Virji M., Heckels J. E.. 1983; Antigenic cross-reactivity of Neisseria pili: investigations with type- and species-specific monoclonal antibodies. J Gen Microbiol129:2761–2768
    [Google Scholar]
  39. Virji M., Heckels J. E., Potts W. J., Hart C. A., Saunders J. R.. 1989; Identification of epitopes recognized by monoclonal antibodies SM1 and SM2 which react with all pili of Neisseria gonorrhoeae but which differentiate between two structural classes of pili expressed by Neisseria meningitidis and the distribution of their encoding sequences in the genomes of Neisseria spp. J Gen Microbiol135:3239–3251
    [Google Scholar]
  40. Vogel U., Frosch M.. 1999; Mechanisms of neisserial serum resistance. Mol Microbiol32:1133–1139[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-1-229
Loading
/content/journal/micro/10.1099/00221287-148-1-229
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error