1887

Abstract

Although chlorophenol (CP) degradation has been studied, no bacterium responsible for degradation of CP under denitrifying conditions has been isolated. Moreover, little substantial evidence for anaerobic degradation of CPs coupled with denitrification is available even for mixed cultures. Degradation of CP [2-CP, 3-CP, 4-CP, 2,4-dichlorophenol (DCP) or 2,6-DCP] under denitrifying conditions was examined in anaerobic batch culture inoculated with activated sludge. Although 3-CP, 4-CP, 2,4-DCP and 2,6-DCP were not stably degraded, 2-CP was degraded and its degradation capability was sustained in a subculture. However, the rate of 2-CP degradation was not significantly enhanced by subculturing. In 2-CP-degrading cultures, nitrate was consumed stoichiometrically and concomitantly during 2-CP degradation, and a dechlorination intermediate was not detected, suggesting that 2-CP degradation was coupled with nitrate reduction. A 2-CP-degrading enrichment culture degraded 2-CP in the presence of nitrate, but did not in the absence of nitrate or the presence of sulfate. This suggests that the enrichment culture strictly requires nitrate for degradation of 2-CP. The apparent specific growth rate of the 2-CP degrading species was 0·0139 d. Thus the apparent doubling time of the 2-CP-degrading population in the enrichment culture was greater than 50 d, which may explain difficulty in enrichment and isolation of micro-organisms responsible for CP degradation under denitrifying conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-1-221
2002-01-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/1/1480221a.html?itemId=/content/journal/micro/10.1099/00221287-148-1-221&mimeType=html&fmt=ahah

References

  1. Boyd, S. A. & Shelton, D. R. ( 1984; ). Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge. Appl Environ Microbiol 47, 272-277.
    [Google Scholar]
  2. Braun, K. & Gibson, D. T. ( 1984; ). Anaerobic degradation of 2-aminobenzoate (anthranilic acid) by denitrifying bacteria. Appl Environ Microbiol 48, 102-107.
    [Google Scholar]
  3. Cole, J. R., Cascarelli, A. L., Mohn, W. W. & Tiedje, J. M. ( 1994; ). Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol. Appl Environ Microbiol 60, 3536-3542.
    [Google Scholar]
  4. Dolfing, J., Zeyer, J., Binder-Eicher, P. & Schwarzenbach, R. P. ( 1990; ). Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen. Arch Microbiol 154, 336-341.
    [Google Scholar]
  5. Frazer, A. C., Coschigano, P. W. & Young, L. Y. ( 1995; ). Toluene metabolism under anaerobic conditions: a review. Anaerobe 1, 293-303.[CrossRef]
    [Google Scholar]
  6. Fries, M. R., Zhou, J., Chee-Sanford, J. & Tiedje, J. M. ( 1994; ). Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl Environ Microbiol 60, 2802-2810.
    [Google Scholar]
  7. Genthner, B. R. S., Price, W. A.II & Prichard, P. H. ( 1989a; ). Characterization of anaerobic dechlorinating consortia derived from aquatic sediments. Appl Environ Microbiol 55, 1472-1476.
    [Google Scholar]
  8. Genthner, B. R. S., Price, W. A.II & Pritchard, P. H. ( 1989b; ). Anaerobic degradation of chloroaromatic compounds in aquatic sediments under a variety of enrichment conditions. Appl Environ Microbiol 55, 1466-1471.
    [Google Scholar]
  9. Gibson, S. A. & Suflita, J. M. ( 1986; ). Extrapolation of biodegradation results to groundwater aquifers: reductive dehalogenation of aromatic compounds. Appl Environ Microbiol 52, 681-688.
    [Google Scholar]
  10. Häggblom, M. M. & Young, L. Y. ( 1990; ). Chlorophenol degradation coupled to sulfate reduction. Appl Environ Microbiol 56, 3255-3260.
    [Google Scholar]
  11. Häggblom, M. M. & Young, L. Y. ( 1995; ). Anaerobic degradation of halogenated phenols by sulfate-reducing consortia. Appl Environ Microbiol 61, 1546-1550.
    [Google Scholar]
  12. Häggblom, M. M. & Young, L. Y. ( 1999; ). Anaerobic degradation of 3-halobenzoates by a denitrifying bacterium. Arch Microbiol 171, 230-236.[CrossRef]
    [Google Scholar]
  13. Häggblom, M. M., Rivera, M. D. & Young, L. Y. ( 1993; ). Influence of alternative electron acceptors on anaerobic biodegradability of chlorinated phenols and benzoic acids. Appl Environ Microbiol 59, 1162-1167.
    [Google Scholar]
  14. Heider, J. & Fuchs, G. ( 1997; ). Anaerobic metabolism of aromatic compounds. Eur J Biochem 243, 577-596.[CrossRef]
    [Google Scholar]
  15. Hoover, S. R. & Porges, N. ( 1952; ). Assimilation of dairy wastes by activated sludge. II. The equation of synthesis and rate of oxygen utilization. Sewage Ind Wastes 24, 306-312.
    [Google Scholar]
  16. Juteau, P., Beaudet, R., McSween, G., Lépine, F., Milot, S. & Bisaillon, J.-G. ( 1995; ). Anaerobic biodegradation of pentachlorophenol by a methanogenic consortium. Appl Microbiol Biotechnol 44, 218-224.[CrossRef]
    [Google Scholar]
  17. Kazumi, J., Häggblom, M. M. & Young, L. Y. ( 1995; ). Degradation of monochlorinated and nonchlorinated aromatic compounds under iron-reducing conditions. Appl Environ Microbiol 61, 4069-4073.
    [Google Scholar]
  18. Kringstad, K. P. & Lindström, K. ( 1984; ). Spent liquors from pulp bleaching. Environ Sci Technol 18, 236A-248A.[CrossRef]
    [Google Scholar]
  19. Madsen, T. & Aamand, J. ( 1992; ). Anaerobic transformation and toxicity of trichlorophenols in a stable enrichment culture. Appl Environ Microbiol 58, 557-561.
    [Google Scholar]
  20. Madsen, T. & Licht, D. ( 1992; ). Isolation and characterization of an anaerobic chlorophenol-transforming bacterium. Appl Environ Microbiol 58, 2874-2878.
    [Google Scholar]
  21. Mikesell, M. D. & Boyd, S. A. ( 1986; ). Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl Environ Microbiol 52, 861-865.
    [Google Scholar]
  22. Mohn, W. W. & Kennedy, K. J. ( 1992; ). Limited degradation of chlorophenols by anaerobic sludge granules. Appl Environ Microbiol 58, 2131-2136.
    [Google Scholar]
  23. Nicholson, D. K., Woods, S. L., Istok, J. D. & Peek, D. C. ( 1992; ). Reductive dechlorination of chlorophenols by a pentachlorophenol-acclimated methanogenic consortium. Appl Environ Microbiol 58, 2280-2286.
    [Google Scholar]
  24. Nozawa, T. & Maruyama, Y. ( 1988; ). Anaerobic metabolism of phthalate and other aromatic compounds by a denitrifying bacterium. J Bacteriol 170, 5778-5784.
    [Google Scholar]
  25. Rabus, R. & Widdel, F. ( 1995; ). Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 163, 96-103.[CrossRef]
    [Google Scholar]
  26. Rice, C. W. & Tiedje, J. M. ( 1989; ). Regulation of nitrate assimilation by ammonium in soils and in isolated soil microorganisms. Soil Biol Biochem 21, 597-602.[CrossRef]
    [Google Scholar]
  27. Rockne, K. J., Chee-Sanford, J., Sanford, R. A., Hedlund, B. P., Staley, J. T. & Strand, S. E. ( 2000; ). Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl Environ Microbiol 66, 1595-1601.[CrossRef]
    [Google Scholar]
  28. Sanford, R. A. & Tiedje, J. M. ( 1997; ). Chlorophenol dechlorination and subsequent degradation in denitrifying microcosms fed low concentrations of nitrate. Biodegradation 7, 425-434.[CrossRef]
    [Google Scholar]
  29. Sanford, R. A., Cole, J. R., Löffler, F. E. & Tiedje, J. M. ( 1996; ). Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl Environ Microbiol 62, 3800-3808.
    [Google Scholar]
  30. van Schie, P. M. & Young, L. Y. ( 1998; ). Isolation and characterization of phenol-degrading denitrifying bacteria. Appl Environ Microbiol 64, 2432-2438.
    [Google Scholar]
  31. Takeuchi, R., Suwa, Y., Yamagishi, T. & Yonezawa, Y. ( 2000; ). Anaerobic transformation of chlorophenols in methanogenic sludge unexposed to chlorophenols. Chemosphere 41, 1457-1462.[CrossRef]
    [Google Scholar]
  32. Utkin, I., Dalton, D. D. & Wiegel, J. ( 1995; ). Specificity of reductive dehalogenation of substituted ortho-chlorophenols by Desulfitobacterium dehalogenans JW/IU-DC1. Appl Environ Microbiol 61, 346-351.
    [Google Scholar]
  33. Valo, R., Kitunen, V., Salkinoja-Salonen, M. & Räisänen, S. ( 1984; ). Chlorinated phenols as contaminants of soil and water in the vicinity of two Finnish sawmills. Chemosphere 13, 835-844.[CrossRef]
    [Google Scholar]
  34. Valo, R., Kitunen, V. & Salkinoja-Salonen, M. S. ( 1985; ). Chlorinated phenols and their derivatives in soil and ground water around wood-preserving facilities in Finland. Wat Sci Tech 17, 1381-1384.
    [Google Scholar]
  35. Widdel, F. & Bak, F. (1992). Gram-negative mesophilic sulfate-reducing bacteria,. In The Prokaryotes, 2nd edn, pp. 3352–3378. Edited by A. Balows and others. New York: Springer.
  36. Woods, S. L., Ferguson, J. F. & Benjamin, M. M. ( 1989; ). Characterization of chlorophenol and chloromethoxybenzene biodegradation during anaerobic treatment. Environ Sci Technol 23, 62-68.[CrossRef]
    [Google Scholar]
  37. Zhang, X. & Wiegel, J. ( 1990; ). Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments. Appl Environ Microbiol 56, 1119-1127.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-1-221
Loading
/content/journal/micro/10.1099/00221287-148-1-221
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error