1887

Abstract

The phylogenetic placement of the rumen bacterium was determined using a signature sequence approach that allows determination of the relative branching order of the major divisions among [Gupta, R. S. (2000) 24, 367–402]. For this purpose, segments of the Hsp60 (), Hsp70 (), CTP synthase and alanyl-tRNA synthetase genes, which are known to contain signature sequences that are useful for phylogenetic deterministic purposes, were cloned. Using degenerate oligonucleotide primers for highly conserved regions in these proteins, 14 kb, 075 kb, 401 bp and 171 bp fragments of the Hsp70, Hsp60, CTP synthase and alanyl-tRNA synthetase genes respectively were amplified by PCR, and these fragments were cloned and sequenced. These primers, because of their high degree of conservation, could also be used for cloning these genes from other bacterial species. The Hsp70 homologues from different Gram-negative bacteria contain a 21–23 aa insert that is not found in any Gram-positive bacteria. The presence of this insert in the Hsp70 supports its placement within the Gram-negative group of bacteria. A conserved insert in Hsp60 that is commonly present in all bacterial species, except various Gram-positive bacteria, groups and green non-sulphur bacteria, provides evidence that does not belong to these taxa. A particularly useful signature consisting of a 4 aa insert is found in Ala-tRNA synthetase. This insert is present in all proteobacterial homologues as well as in homologues from species belonging to the and (CFB) groups, but it is not found in homologues from any other groups of bacteria. The presence of this insert in Ala-tRNA synthetase provides evidence that this species is related to these groups. However, two other signatures in CTP synthase and Hsp70 proteins, that are distinctive of the proteobacterial species, are not present in the homologues. These results provide evidence that does not belong to the proteobacterial division and thus should be placed in a similar position as the and CFB groups of species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-9-2611
2001-09-01
2020-09-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/9/1472611a.html?itemId=/content/journal/micro/10.1099/00221287-147-9-2611&mimeType=html&fmt=ahah

References

  1. Amann R. L., Lin C., Key R., Montgomery L., Stahl D. A.. 1992; Diversity among Fibrobacter isolates: towards a phylogenetic classification. Syst Appl Microbiol15:23–31
    [Google Scholar]
  2. Asanuma N., Iwamoto M., Hino T.. 1999; Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J Dairy Sci82:780–787[CrossRef]
    [Google Scholar]
  3. Brown J. R., Doolittle W. F.. 1995; Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc Natl Acad Sci USA92:2441–2445[CrossRef]
    [Google Scholar]
  4. Cheng K. J., Forsberg C. W., Minato H., Costerton J. W.. 1991; Microbial ecology and physiology of feed degradation within the rumen. In Physiological Aspects of Digestion and Metabolism in Ruminants pp595–624 Edited by Tsuda T., Sasaki Y., Kawahima R.. New York: Academic Press;
    [Google Scholar]
  5. Debroas D., Blanchart G.. 1993; Interactions between proteolytic and cellulolytic rumen bacteria during hydrolysis of plant cell wall protein. Reprod Nutr Dev33:283–288[CrossRef]
    [Google Scholar]
  6. Doolittle W. F.. 1999; Phylogenetic classification and the universal tree. Science284:2124–2128[CrossRef]
    [Google Scholar]
  7. Fields M. W., Mallik S., Russell J. B.. 2000; Fibrobacter succinogenes S85 ferments ball-milled cellulose as fast as cellobiose until cellulose surface area is limiting. Appl Microbiol Biotechnol54:570–574[CrossRef]
    [Google Scholar]
  8. Fraser C. M., Gocayne J. D., White O.. 7 other authors 1995; The minimal gene complement of Mycoplasma genitalium . Science270:397–403[CrossRef]
    [Google Scholar]
  9. Galley K. A., Singh B., Gupta R. S.. 1992; Cloning of HSP70 ( dnaK ) gene from Clostridium perfringens using a general polymerase chain reaction based approach. Biochim Biophys Acta 1130;203–208[CrossRef]
    [Google Scholar]
  10. Garcia-Vallve S., Romeu A., Palau J.. 2000; Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol17:352–361[CrossRef]
    [Google Scholar]
  11. Gokarn R. R., Eitnan M. A., Martin S. A., Eriksson K. E.. 1997; Production of succinate from glucose, cellobiose, and various cellulosic materials by the ruminal anaerobic bacteria Fibrobacter succinogenes and Ruminococcus flavefaciens . Appl Biochem Biotechnol68:69–80[CrossRef]
    [Google Scholar]
  12. Gupta R. S.. 1995; Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol15:1–11[CrossRef]
    [Google Scholar]
  13. Gupta R. S.. 1998a; Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among Archaebacteria, Eubacteria, and Eukaryotes. Microbiol Mol Biol Rev62:1435–1491
    [Google Scholar]
  14. Gupta R. S.. 1998b; What are archaebacteria: life’s third domain or monoderm prokaryotes related to Gram-positive bacteria? A new proposal for the classification of prokaryotic organisms. Mol Microbiol29:695–708[CrossRef]
    [Google Scholar]
  15. Gupta R. S.. 2000a; The phylogeny of Proteobacteria: relationships to other Eubacterial phyla and eukaryotes. FEMS Microbiology Reviews24:367–402[CrossRef]
    [Google Scholar]
  16. Gupta R. S.. 2000b; The natural relationships among prokaryotes. CRC Crit Rev Microbiol26:111–131[CrossRef]
    [Google Scholar]
  17. Gupta R. S.. 2000c; Evolutionary relationships among bacteria: does 16S rRNA provide all the answers?. ASM News66:189–190
    [Google Scholar]
  18. Gupta R. S., Golding G. B.. 1993; Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J Mol Evol37:573–582
    [Google Scholar]
  19. Gupta R. S., Singh B.. 1992; Cloning of the HSP70 gene from Halobacterium marismortui : relatedness of archaebacterial HSP70 to its eubacterial homologs and a model for the evolution of the HSP70 gene. J Bacteriol17:4594–4605
    [Google Scholar]
  20. Gupta R. S., Mukhtar T., Singh B.. 1999; Evolutionary relationships among photosynthetic prokaryotes ( Heliobacterium chlorum, Chloroflexus aurantiacus , Cyanobacteria, Chlorobium tepidum and Proteobacteria): implications regarding the origin of photosynthesis. Mol Microbiol32:893–906[CrossRef]
    [Google Scholar]
  21. Holdeman L. V., Kelley R. W., Moore W. E. C.. 1984; Family I. Bacteroidaceae Pribam 1933. In Bergey’s Manual of Systematic Bacteriology pp602–662 Edited by Krieg N. R., Holt J. G.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  22. Huang L., Forsberg C. W.. 1990; Cellulose digestion and cellulase regulation and distribution in Fibrobacter succinogenes subsp. succinogenes S85. Appl Environ Microbiol56:1221–1228
    [Google Scholar]
  23. Hugenholtz P., Pitulle C., Hershberger K. L., Pace N.. 1998; Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol180:366–376
    [Google Scholar]
  24. Hungate R. E.. 1950; The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev14:1–49
    [Google Scholar]
  25. Iwabe N., Kuma K., Hasegawa M., Osawa S., Miyata T.. 1989; Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA86:9355–9359[CrossRef]
    [Google Scholar]
  26. Lindquist S., Craig E. A.. 1988; The heat-shock proteins. Annu Rev Genet22:631–677[CrossRef]
    [Google Scholar]
  27. Ludwig W., Schleifer K. H.. 1999; Phylogeny of Bacteria beyond the 16S rRNA Standard. ASM News65:752–757
    [Google Scholar]
  28. Maidak B. L., Cole J. R.,11 other authors Parker C. T., Jr.. 1999; A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res27:171–173[CrossRef]
    [Google Scholar]
  29. Montgomery L., Flesher B., Stahl D.. 1988; Transfer of Bacteroides succinogenes (Hungate) to Fibrobacter gen. nov. as Fibrobacter succinogenes comb. nov. and description of Fibrobacter intestinalis sp. nov. Int J Syst Bacteriol38:430–435[CrossRef]
    [Google Scholar]
  30. Olsen G. J., Woese C. R.. 1993; Ribosomal RNA: a key to phylogeny. FASEB J7:113–123
    [Google Scholar]
  31. Paster B. J., Dewhirst F. E., Olsen I., Fraser G. J.. 1994; Phylogeny of Bacteroides, Prevotella , and Porphyromonas spp. and related bacteria. J Bacteriol176:725–732
    [Google Scholar]
  32. Reichenbach H.. 1992; The Order Cytophagales . In The Prokaryotes pp3631–3675 Edited by Balows A., Dworkin M., Harder W., Schleifer K. H., Trüper H. G.. New York: Springer;
    [Google Scholar]
  33. Rusanganwa E., Singh B., Gupta R. S.. 1992; Cloning of HSP60 (GroEL) operon from Clostridium perfringens using a polymerase chain reaction based approach. Biochim Biophys Acta 1130;90–94[CrossRef]
    [Google Scholar]
  34. Shah R. N.. 1992; The genus Bacteroides and related taxa. In The Prokaryotes pp3593–3607 Edited by Balows A., Dworkin M., Harder W., Schleifer K. H., Trüper H. G.. New York: Springer;
    [Google Scholar]
  35. Shi Y., Odt C. L., Weimer P. J.. 1997; Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Appl Environ Microbiol63:734–742
    [Google Scholar]
  36. Wang Y., McAllister T. A., Yanke L. J., Cheeke P. R.. 2000; Effect of steroidal saponin from Yucca schidigera extract on ruminal microbes. J Appl Microbiol88:887–896[CrossRef]
    [Google Scholar]
  37. Weimer P. J., Waghorn G. C., Odt C. L., Mertens D. R.. 1999; Effect of diet on populations of three species of ruminal cellulolytic bacteria in lactating dairy cows. J Dairy Sci82:122–134[CrossRef]
    [Google Scholar]
  38. Weisburg W. G., Oyaizu Y., Oyaizu H., Woese C. R.. 1985; Natural relationship between Bacteroides and Flavobacteria . J Bacteriol164:230–236
    [Google Scholar]
  39. Woese C. R.. 1987; Bacterial evolution. Microbiol Rev51:221–271
    [Google Scholar]
  40. Woese C. R.. 1998; The universal ancestor. Proc Natl Acad Sci USA95:6854–6859[CrossRef]
    [Google Scholar]
  41. Zinder S. H.. 1998; Bacterial diversity. In Topley and Wilson’s Microbiology and Microbial Infections pp125–147 Edited by Balows A., Duerden B. I.. London: Arnold;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-9-2611
Loading
/content/journal/micro/10.1099/00221287-147-9-2611
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error