1887

Abstract

A penicillin-resistant mutant, JH2-2r (MIC 75 μg ml), was isolated from JH2-2 (MIC 5 μg ml) by successive passages on plates containing increasing concentrations of benzylpenicillin. A comparison of the penicillin-binding protein (PBP) profiles in the two strains revealed a more intensely labelled PBP4 in JH2-2r. Because the sequences of the JH2-2 and JH2-2r genes were strictly identical, even in their promoter regions, this intensive labelling could only be associated with an overproduction of the low-affinity PBP4. No gene analogous to that proposed to act as a regulator of PBP5 synthesis in and could be identified in the vicinity of in JH2-2 and JH2-2r. However, a -like gene distant from was identified. The cloning and sequencing of that -like gene from both strains indicated that they were identical. It is therefore postulated that the PBP4 overproduction in JH2-2r results from the modification of an as yet unidentified factor.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-9-2561
2001-09-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/9/1472561a.html?itemId=/content/journal/micro/10.1099/00221287-147-9-2561&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410[CrossRef]
    [Google Scholar]
  2. Andersen P. S., Martinussen J., Hammer K.. 1996; Sequence analysis and identification of the pyrKDbF operon from Lactococcus lactis including a novel gene, pyrK involved in pyrimidine biosynthesis. J Bacteriol178:5005–5012
    [Google Scholar]
  3. Courvalin P.. 1994; Transfer of antibiotic resistance genes between Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother38:1447–1451[CrossRef]
    [Google Scholar]
  4. Coyette J., Ghuysen J. M., Fontana R.. 1978; Solubilization and isolation of the membrane-bound dd-carboxypeptidase of Streptococcus faecalis ATCC 9790. Eur J Biochem88:297–305[CrossRef]
    [Google Scholar]
  5. Coyette J., Ghuysen J. M., Fontana R.. 1980; The penicillin-binding proteins in Streptococcus faecalis ATCC 9790. Eur J Biochem110:445–456[CrossRef]
    [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O.. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res12:387–395[CrossRef]
    [Google Scholar]
  7. El Kharroubi A., Jacques P., Piras G., Van Beeumen J., Coyette J., Ghuysen J. M.. 1991; The Enterococcus hirae R40 penicillin-binding protein 5 and the methicillin-resistant Staphylococcus aureus penicillin-binding 2′ are similar. Biochem J280:463–469
    [Google Scholar]
  8. Fontana R., Cerini R., Longoni P., Grossato A., Canepari P.. 1983; Identification of a streptococcal penicillin-binding protein that reacts very slowly with penicillin. J Bacteriol155:1343–1350
    [Google Scholar]
  9. Fontana R., Grossato A., Rossi L., Cheng Y. R., Satta G.. 1985; Transition from resistance to hypersusceptibility to β-lactam antibiotics associated with loss of low affinity PBP in a Streptococcus faecium mutant highly resistant to penicillin. Antimicrob Agents Chemother26:678–683
    [Google Scholar]
  10. Fontana R., Aldegheri M., Ligozzi M., Lopez H., Sucari A., Satta G.. 1994; Overproduction of a low-affinity penicillin-binding protein and high-level ampicillin resistance in Enterococcus faecium . Antimicrob Agents Chemother38:1980–1983[CrossRef]
    [Google Scholar]
  11. Ghuysen J. M., Coyette J., Frère J. M., Leyh-Bouille M., Nguyen-Distèche M.. 1986; Active-site serine d-alanyl-d-alanine-cleaving peptidase-catalysed acyl-transfer reactions. Procedures for studying the penicillin-binding proteins of bacterial plasma membranes. Biochem J235:159–165
    [Google Scholar]
  12. Goffin C., Ghuysen J. M.. 1998; Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev62:1079–1093
    [Google Scholar]
  13. Griffin A. M., Morris V. J., Gasson M. J.. 1996; The cpsABCDE genes involved in polysaccharide production in Streptococcus salivarius spp. thermophilus NCBF2393. Gene183:23–27[CrossRef]
    [Google Scholar]
  14. Gutmann L.. 1994; Résistance des entérocoques aux bêta-lactamines et conséquences sur les synergies. Méd Mal Infect (spécial)24:165–171
    [Google Scholar]
  15. Hancock L. E., Gilmore M. S.. 2000; Pathogenicity of enterococci. In Gram-positive Pathogens pp251–288 Edited by Fischetti V. A., Novick R. P., Ferretti J. J., Portnoy D. A., Road J. I.. Washington, DC: ASM Press;
    [Google Scholar]
  16. Innis M. A., Gelfand D. H., Sninsky J. J., White T. J.. 1990; PCR protocols. A Guide to Methods and Applications New York: Academic Press;
    [Google Scholar]
  17. Jett B. D., Huycke M. M., Gilmore M. S.. 1994; Virulence of enterococci. Clin Microbiol Rev7:462–478
    [Google Scholar]
  18. Klare I., Rodloff A. C., Wagner J., Witte W., Hakenbeck R.. 1992; Overproduction of a penicillin-binding protein is not the only mechanism of penicillin resistance in Enterococcus faecium . Antimicrob Agents Chemother36:783–787[CrossRef]
    [Google Scholar]
  19. Kunst F., Ogasawara N., Moszer I.. 148 other authors 1997; The complete sequence of the Gram-positive bacterium Bacillus subtilis . Nature390:249–256[CrossRef]
    [Google Scholar]
  20. Laskey R. A.. 1980; The use of intensifying screens or organic scintillators for visualizing radioactive molecules, resolved by gel electrophoresis. Methods Enzymol65:363–371
    [Google Scholar]
  21. Lazarevic V., Margot P., Soldo B., Karamata D.. 1992; Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N -acetylmuramoyl-l-alanine amidase and its modifier. J Gen Microbiol138:1949–1961[CrossRef]
    [Google Scholar]
  22. Ligozzi M., Pittaluga F., Fontana R.. 1993; Identification of a genetic element ( psr ) which negatively controls expression of Enterococcus hirae penicillin-binding protein 5. J Bacteriol175:2046–2051
    [Google Scholar]
  23. Ligozzi M., Pittaluga F., Fontana R.. 1996; Modification of the penicillin-binding protein 5 associated with high-level ampicillin resistance of Enterococcus faecium . Antimicrob Agents Chemother40:354–357
    [Google Scholar]
  24. Lillehang D., Nes I. F., Birkeland N. K.. 1997; A highly efficient and stable system for site-specific integration of genes and plasmids into the phage ϕLC3 attachment site ( attB ) of the Lactococcus lactis chromosome. Gene188:129–136[CrossRef]
    [Google Scholar]
  25. Lindström E. B., Boman H. G., Steele B. B.. 1970; Resistance of Escherichia coli to penicillin. VI. Purification and characterization of the chromosomally mediated penicillinase present in ampA -containing strains. J Bacteriol101:218–231
    [Google Scholar]
  26. Loureiro Dos Santos A. L., Chopin A.. 1987; Shotgun cloning in Streptococcus lactis . FEMS Microbiol Lett42:209–212
    [Google Scholar]
  27. Mainardi J. L., Billot-Klein D., Coutrot A., Legrand R., Schoot B., Gutmann L.. 1998; Resistance to cefotaxime and peptidoglycan composition in Enterococcus faecalis are influenced by exogenous sodium chloride. Microbiology144:2679–2685[CrossRef]
    [Google Scholar]
  28. Massidda O., Dardenne O., Whalen M. B., Zorzi W., Coyette J., Shockman G. D., Daneo-Moore L.. 1998; The PBP5 synthesis repressor ( psr ) gene of Enterococcus hirae ATCC 9790 is substantially longer than previously reported. FEMS Microbiol Lett166:355–360[CrossRef]
    [Google Scholar]
  29. Masson J. M., Labia R.. 1983; Synthesis of a 125I-radiolabeled penicillin for penicillin-binding protein studies. Anal Biochem128:164–168[CrossRef]
    [Google Scholar]
  30. Mollerach M., Partoune P., Coyette J., Ghuysen J. M.. 1996; Importance of the E46-D160 polypeptide segment of the non-penicillin-binding module for the stability of the low-affinity, multimodular class B penicillin-binding protein 5 of Enterococcus hirae . J Bacteriol178:1774–1775
    [Google Scholar]
  31. Morona J. K., Morona R., Paton J. C.. 1997; Characterization of the locus encoding the Streptococcus pneumoniae type 19F capsular polysaccharide biosynthetic pathway. Mol Microbiol23:751–753[CrossRef]
    [Google Scholar]
  32. Murray B. E.. 1990; The life and times of the Enterococcus . Clin Microbiol Rev3:46–65
    [Google Scholar]
  33. Murray T., Popham D. L., Setlow P.. 1996; Identification and characterization of pbpC , the gene encoding Bacillus subtilis penicillin-binding protein 3. J Bacteriol178:6001–6005
    [Google Scholar]
  34. Nakano Y., Yoshida Y., Yamashita Y., Koga T.. 1995; Construction of a series of pACYC-derived plasmid vectors. Gene162:157–158[CrossRef]
    [Google Scholar]
  35. Pearson W. R., Lipman D. J.. 1988; Improved tools for biological sequence analysis. Proc Natl Acad Sci USA85:2444–2448[CrossRef]
    [Google Scholar]
  36. Piras G., El Kharroubi A., Van Beeumen J., Coeme E., Coyette J., Ghuysen J. M.. 1990; Characterization of an Enterococcus hirae penicillin-binding protein 3 with low penicillin affinity. J Bacteriol172:6856–6862
    [Google Scholar]
  37. Piras G., Raze D., El Kharroubi A., Hastir D., Englebert S., Coyette J., Ghuysen J. M.. 1993; Cloning and sequencing of the low affinity penicillin-binding protein 3r-encoding gene of Enterococcus hirae S185: modular design and structural organization of the protein. J Bacteriol175:2844–2852
    [Google Scholar]
  38. Rice L. B., Carias L. L., Hutton-Thomas R., Sifaoui F., Gutmann L., Rudin S. D.. 2001; Penicillin-binding protein 5 and expression of ampicillin resistance in Enterococcus faecium . Antimicrob Agents Chemother45:1480–1486[CrossRef]
    [Google Scholar]
  39. Schmit J. L., Leclercq R., Scheimberg A., Laudaner D. I.. 1994; Approche épidémiologique et clinique des entérocoques: résultats d’une enquête. Méd Mal Infect (spécial)24:141–148
    [Google Scholar]
  40. Signoretto C., Boaretti M., Canepari P.. 1994; Cloning, sequencing and expression in Escherichia coli of the low affinity penicillin-binding protein of Enterococcus faecalis . FEMS Microbiol Lett123:99–106[CrossRef]
    [Google Scholar]
  41. Soldo B., Lazarevic V., Karamata D., Mauël C.. 1996; Sequence of the 305°–307° region of the Bacillus subtilis chromosome. Microbiology142:3079–3088[CrossRef]
    [Google Scholar]
  42. Song M. D., Wachi M., Doi M., Ishino F., Matsuhashi M.. 1987; Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus . FEBS Lett221:167–171[CrossRef]
    [Google Scholar]
  43. Stingele F., Neeser J. R., Mollet B.. 1996; Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J Bacteriol178:1680–1690
    [Google Scholar]
  44. Van Sinderen D., Karsens H., Kok J., Terpstra P., Ruiters M. H., Venema G., Nautra A.. 1996; Sequence analysis and molecular characterization of the temperate lactococcal bacteriophage r1t. Mol Microbiol19:1343–1355[CrossRef]
    [Google Scholar]
  45. Williamson R., Gutmann L., Horaud T., Le Bouguénec C.. 1985; One or two low-affinity penicillin-binding proteins may be responsible for the range of susceptibility of Enterococcus faecium to benzylpenicillin. J Gen Microbiol131:1933–1940
    [Google Scholar]
  46. Williamson R., Gutmann L., Horaud T., Delbos F., Acar J. F.. 1986; Use of penicillin-binding proteins for identification of enterococci. J Gen Microbiol132:1929–1937
    [Google Scholar]
  47. Zorzi W., Zhou X. Y., Dardenne O., Lamotte J., Raze D., Pierre J., Gutmann L., Coyette J.. 1996; Structure of the low-affinity penicillin-binding protein 5, PBP5fm, in wild-type and highly penicillin-resistant strains of Enterococcus faecium . J Bacteriol178:4948–4957
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-9-2561
Loading
/content/journal/micro/10.1099/00221287-147-9-2561
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error