1887

Abstract

Sequencing of the region flanking , the gene encoding the copper-containing nitrite reductase in 2.4.3, has identified two genes whose products could potentially be involved in nitrite reductase expression and activity. One of the genes has been designated . Putative orthologues are found in other denitrifiers, where they are also located downstream of the structural gene for nitrite reductase. The in 2.4.3 is apparently cotranscribed with . Inactivation of had no effect on cell growth, or on nitrite reductase expression or activity. Downstream of and divergently transcribed is a gene, designated , encoding a protein with significant similarity to pseudoazurins from other denitrifiers. However, three of the four residues required for binding of the type I copper centre are not conserved in the deduced sequence of the protein in 2.4.3. is expressed only when oxygen becomes limiting. expression is dependent on both FnrL and NnrR, and a putative binding site for these proteins has been identified. Expression of is also dependent on the two-component PrrB/PrrA system. Inactivation of had no significant effect on cell growth or on nitrite reductase expression or activity. Expression of a maltose-binding protein–PpaZ fusion indicated that the protein could not bind copper. Examination of the genome of the related bacterium 2.4.1 revealed that it encodes but not and evidence is presented suggesting that a common ancestor of 2.4.3 and 2.4.1 had both nitrite and nitric oxide reductase activity but as the strains diverged 2.4.1 lost and , making it incapable of nitrite reduction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-9-2505
2001-09-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/9/1472505a.html?itemId=/content/journal/micro/10.1099/00221287-147-9-2505&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic Local Alignment Search Tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Bedzyk L., Wang T., Ye R. W. 1999; The periplasmic nitrate reductase in Pseudomonas sp. strain G-179 catalyzes the first step in denitrification. J Bacteriol 181:2802–2806
    [Google Scholar]
  3. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523 [CrossRef]
    [Google Scholar]
  4. Cho S., Choi Y. 1995; Nucleotide sequence analysis of an endo-xylanase gene ( xynA ) from Bacillus stearothermophilus . J Microbiol Biotechnol 5:117–124
    [Google Scholar]
  5. Choudhary M., Kaplan S. 2000; DNA sequence analysis of the photosynthesis region of Rhodobacter sphaeroides 2.4.1. Nucleic Acids Res 28:862–867 [CrossRef]
    [Google Scholar]
  6. Chung C. T., Niemela S. L., Miller R. H. 1989; One-step transformation of competent Escherichia coli : transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA 86:2172–2175 [CrossRef]
    [Google Scholar]
  7. Du S., Bird T. H., Bauer C. E. 1998; DNA binding characteristics of RegA*. A constitutively active anaerobic activator of photosynthesis gene expression in Rhodobacter capsulatus . J Biol Chem 273:18509–18513 [CrossRef]
    [Google Scholar]
  8. Eraso J. M., Kaplan S. 1994; prrA , a putative response regulator involved in oxygen regulation of photosynthetic gene expression in Rhodobacter sphaeroides . J Bacteriol 176:32–43
    [Google Scholar]
  9. Felsenfeld G. 1960; The determination of cuprous ion in copper proteins. Arch Biochem Biophys 87:247–251 [CrossRef]
    [Google Scholar]
  10. Fulop V., Moir J. W. B., Ferguson S. J., Hajdu J. 1995; The anatomy of a bifunctional enzyme: structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd 1. Cell 81:369–377 [CrossRef]
    [Google Scholar]
  11. Gauden D. E., Armitage J. P. 1995; Electron transport-dependent taxis in Rhodobacter sphaeroides . J Bacteriol 177:5853–5859
    [Google Scholar]
  12. Godden J. W., Turley S., Teller D. C., Adman E. T., Liu M. Y., Payne W. J., Legall J. 1991; The 2·3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes . Science 253:438–442 [CrossRef]
    [Google Scholar]
  13. Hainaut P., Rolley N., Davies M., Milner J. 1995; Modulation by copper of p53 conformation and sequence-specific DNA binding: role for Cu(II)/Cu(I) redox mechanism. Oncogene 10:27–32
    [Google Scholar]
  14. Hormel S., Adman E., Walsh K. A., Beppu T., Titani K. 1986; The amino acid sequence of the blue copper protein of Alcaligenes faecalis . FEBS Lett 197:301–304 [CrossRef]
    [Google Scholar]
  15. Inoue T., Nishio N., Suzuki S., Kataoka K., Kohzuma T., Kai Y. 1999; Crystal structure determinations of oxidized and reduced pseudoazurins from Achromobacter cycloclastes . Concerted movement of copper site in redox forms with the rearrangement of hydrogen bond at a remote histidine. J Biol Chem 274:17845–17852 [CrossRef]
    [Google Scholar]
  16. Kakutani T., Watanabe H., Arima K., Beppu T. 1981a; Purification and properties of a copper-containing nitrite reductase from a denitrifying bacterium Alcaligenes faecalis S-6. J Biochem 89:453–461
    [Google Scholar]
  17. Kakutani T., Watanabe H., Arima K., Beppu T. 1981b; A blue protein as an activating factor for nitrite reductase from Alcaligenes faecalis strain S-6. J Biochem 89:463–472
    [Google Scholar]
  18. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. 1988; Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70:191–197 [CrossRef]
    [Google Scholar]
  19. Koch K. A., Pena M. M., Thiele D. J. 1997; Copper-binding motifs in catalysis, transport, detoxification and signaling. Chem Biol 4:549–560 [CrossRef]
    [Google Scholar]
  20. Kokotek W., Lotz W. 1989; Construction of a lacZ -kanamycin-resistance cassette, useful for site-directed mutagenesis and as a promoter probe. Gene 84:467–471 [CrossRef]
    [Google Scholar]
  21. Koutny M., Kucera I., Tesarik R., Turanek J., Van Spanning R. J. 1999; Pseudoazurin mediates periplasmic electron flow in a mutant strain of Paracoccus denitrificans lacking cytochrome c 550. FEBS Lett 448:157–159 [CrossRef]
    [Google Scholar]
  22. Kukimoto M., Nishiyama M., Ohnuki T., Turley S., Adman E. T., Horinouchi S., Beppu T. 1995; Identification of interaction site of pseudoazurin with its redox partner, copper-containing nitrite reductase from Alcaligenes faecalis S-6. Protein Eng 8:153–158 [CrossRef]
    [Google Scholar]
  23. Kukimoto M., Nishiyama M., Tanokura M., Adman E. T., Horinouchi S. 1996; Studies on protein–protein interaction between copper-containing nitrite reductase and pseudoazurin from Alcaligenes faecalis S-6. J Biol Chem 271:13680–13683 [CrossRef]
    [Google Scholar]
  24. Kwiatkowski A. V., Laratta W. P., Toffanin A., Shapleigh J. P. 1997; Analysis of the role of the nnrR gene product in the response of Rhodobacter sphaeroides 2.4.1 to exogenous nitric oxide. J Bacteriol 179:5618–5620
    [Google Scholar]
  25. Leuking D. R., Fraley R. T., Kaplan S. 1978; Intracytoplasmic membrane synthesis in synchronous cell populations of Rhodopseudomonas sphaeroides . J Biol Chem 253:451–457
    [Google Scholar]
  26. Leung Y. C., Chan C., Reader J. S., Willis A. C., van Spanning R. J., Ferguson S. J., Radford S. E. 1997; The pseudoazurin gene from Thiosphaera pantotropha : analysis of upstream putative regulatory sequences and overexpression in Escherichia coli . Biochem J 321:699–705
    [Google Scholar]
  27. Lutsenko S., Petrukhin K., Cooper M. J., Gilliam C. T., Kaplan J. H. 1997; N-terminal domains of human copper-transporting adenosine triphosphatases (the Wilson’s and Menkes disease proteins) bind copper selectively in vivo and in vitro with stoichiometry of one copper per metal-binding repeat. J Biol Chem 272:18939–18944 [CrossRef]
    [Google Scholar]
  28. McGowan S. J., Sebaihia M., O’Leary S., Hardie K. R., Williams P., Stewart G. S., Bycroft B. W., Salmond G. P. 1997; Analysis of the carbapenem gene cluster of Erwinia carotovora : definition of the antibiotic biosynthetic genes and evidence for a novel beta-lactam resistance mechanism. Mol Microbiol 26:545–556 [CrossRef]
    [Google Scholar]
  29. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Oh J. I., Eraso J. M., Kaplan S. 2000; Interacting regulatory circuits involved in orderly control of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 182:3081–3087 [CrossRef]
    [Google Scholar]
  31. Olesen K. O., Veselov A., Zhao Y., Wang Y., Danner B., Scholes C. P., Shapleigh J. P. 1998; Spectroscopic, kinetic and electrochemical characterization of heterologously expressed wild type and mutant forms of copper-containing nitrite reductase from Rhodobacter sphaeroides 2.4.3. Biochemistry 37:6086–6094 [CrossRef]
    [Google Scholar]
  32. Petratos K., Banner D. W., Beppu T., Wilson K. S., Tsernoglou D. 1987; The crystal structure of pseudoazurin from Alcaligenes faecalis S-6 determined at 2·9 Å resolution. FEBS Lett 218:209–214 [CrossRef]
    [Google Scholar]
  33. Prentki P., Krisch H. M. 1984; In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313 [CrossRef]
    [Google Scholar]
  34. Shapleigh J. P., Payne W. J. 1985; Differentiation of c,d 1 cytochrome and copper nitrite reductase production in denitrifiers. FEMS Microbiol Lett 26:275–279
    [Google Scholar]
  35. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1:784–791 [CrossRef]
    [Google Scholar]
  36. Spiro S. 1994; The FNR family of transcriptional regulators. Antonie Leeuwenhoek 66:23–36 [CrossRef]
    [Google Scholar]
  37. Stephens R. S., Kalman S., Lammel C. J. 9 other authors 1998; Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis . Science 282:754–759 [CrossRef]
    [Google Scholar]
  38. Stewart V., Parales J.Jr. 1988; Identification and expression of genes narL and narX of the nar (nitrate reductase) locus in Escherichia coli K-12. J Bacteriol 170:1589–1597
    [Google Scholar]
  39. Toffanin A., Wu Q., Maskus M., Casella S., Shapleigh J. P., Abruña H. D. 1996; Characterization of the gene encoding nitrite reductase and the physiological consequences of its expression in the nondenitrifying Rhizobium ′hedysari ′ strain HCNT1. Appl Environ Microbiol 62:4019–4025
    [Google Scholar]
  40. Tosques I. E., Shi J., Shapleigh J. P. 1996; Cloning and characterization of nnrR , whose product is required for the expression of proteins involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. J Bacteriol 178:4958–4964
    [Google Scholar]
  41. Tosques I. E., Kwiatkowski A. V., Shi J., Shapleigh J. P. 1997; Characterization and regulation of the gene encoding nitrite reductase in Rhodobacter sphaeroides 2.4.3. J Bacteriol 179:1090–1095
    [Google Scholar]
  42. Williams P. A., Fulop V., Leung Y. C., Chan C., Moir J. W., Howlett G., Ferguson S. J., Radford S. E., Hajdu J. 1995; Pseudospecific docking surfaces on electron transfer proteins as illustrated by pseudoazurin, cytochrome c 550 and cytochrome cd 1 nitrite reductase. Nat Struct Biol 2:975–982 [CrossRef]
    [Google Scholar]
  43. Yamamoto K., Uozumi T., Beppu T. 1987; The blue copper protein gene of Alcaligenes faecalis S-6 directs secretion of blue copper protein from Escherichia coli cells. J Bacteriol 169:5648–5652
    [Google Scholar]
  44. Zeilstra-Ryalls J. H., Kaplan S. 1995; Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene. J Bacteriol 177:6422–6431
    [Google Scholar]
  45. Zumft W. G. 1997; Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616
    [Google Scholar]
/content/journal/micro/10.1099/00221287-147-9-2505
Loading
/content/journal/micro/10.1099/00221287-147-9-2505
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error